ﻻ يوجد ملخص باللغة العربية
We investigate the interaction of two two-level qubits with a single mode quantum field in a cavity without rotating wave approximation and considering that qubits can be located at an arbitrary distance from each other. We demonstrate that there exists a radiation induced interaction potential between atoms. We studied the properties of the system numerically and in addition constructed a simple analytical approximation. It is shown that the observable characteristics are substantially dependent on the distance between the qubits in the strong coupling regime. This allows one to perform the quantum control of the qubits, which can be exploited for the recording and transmission of quantum information.
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance $r$ and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assum
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial s
Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by
We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interaction. We derive analytical expressions for heat currents and thermal rectification and provide possible physical mechanisms behind the observed
We show how to derive a consistent quantum theory of radiation reaction of a non-relativistic point-dipole quantum oscillator by including the dynamical fluctuations of the position of the dipole. The proposed non-linear theory displays neither runaw