ترغب بنشر مسار تعليمي؟ اضغط هنا

PTF1J2224+17: a short-period, high-field polar

69   0   0.0 ( 0 )
 نشر من قبل Axel D. Schwope
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present time-resolved photometry of the cataclysmic variable (CV) PTF1J2224+17 obtained during 4 nights in October 2018 and January 2019 from Inastars observatory. The object is variable on a period of 103.82 min. Archival Catalina Real-Time Transient Survey (CRTS), PTF, and ZTF-data show frequent changes between high and low states. Based on its photometric properties and the cyclotron humps in the identification spectrum the object is certainly classified as an AM Herculis star (or polar) with a likely magnetic field strength of B ~ 65 MG. Its accretion duty cycle was estimated from nine years of photometric monitoring to be about 35 %.



قيم البحث

اقرأ أيضاً

We report the discovery of a new eclipsing polar, CRTS J035010.7+323230 (hereafter CRTS J0350+3232). We identified this cataclysmic variable (CV) candidate as a possible polar from its multi-year Catalina Real-Time Transient Survey (CRTS) optical lig ht curve. Photometric monitoring of 22 eclipses in 2015 and 2017 was performed with the 2.1-m Otto Struve Telescope at McDonald Observatory. We derive an unambiguous high-precision ephemeris. Strong evidence that CRTS J0350+3232 is a polar comes from optical spectroscopy obtained over a complete orbital cycle using the Apache Point Observatory 3.5-m telescope. High velocity Balmer and He II $lambda$4686{AA} emission line equivalent width ratios, structures, and variations are typical of polars and are modulated at the same period, 2.37-hrs (142.3-min), as the eclipse to within uncertainties. The spectral energy distribution and luminosity is found to be comparable to that of AM Herculis. Pre-eclipse dips in the light curve show evidence for stream accretion. We derive the following tentative binary and stellar parameters assuming a helium composition white dwarf and a companion mass of 0.2 M$_{odot}$: inclination i = 74.68$^{o}$ ${pm}$ 0.03$^{o}$, semi-major axis a = 0.942 ${pm}$ 0.024 R$_{odot}$, and masses and radii of the white dwarf and companion respectively: M$_{1}$ = 0.948 $^{+0.006}_{-0.012}$ M$_{odot}$, R$_{1}$ = 0.00830 $^{+0.00012}_{-0.00006}$ R$_{odot}$, R$_{2}$ = 0.249 ${pm}$ 0.002 R$_{odot}$. As a relatively bright (V $sim$ 17-19 mag), eclipsing, period-gap polar, CRTS J0350+3232 will remain an important laboratory for the study of accretion and angular momentum evolution in polars.
91 - S. Scaringi MPE 2016
We analyse the K2 short cadence data of the intermediate polar FO Aqr and provide accurate and updated orbital and spin periodicities. We additionally find small spin period changes as a function of orbital phase of ~0.02 seconds translating to veloc ities of ~ a few km/s. The obtained orbital-folded velocity profile displays two clear maxima and minima, and cannot be explained by the radial velocity of the orbiting white dwarf. Instead we propose that the observed velocities are the sum of the radial velocities of both the white dwarf and of the stellar surface facing the white dwarf which reprocesses the WD spin pulses. This combination can explain the observed low velocities in FO Aqr. However asymmetries in the orbital configuration are required to explain the double peaked velocity profile. One possible scenario would invoke binary eccentricity. We thus developed a simple binary model to explain and fit our observations, and find a small binary eccentricity of e=0.03. Although small, persistent eccentricity in a close interacting binary would induce enhanced mass transfer occurring preferentially at periastron passages. We thus discuss alternative scenarios where other asymmetries might explain our observations assuming circular orbits. Since FO Aqr is the first system where the combined radial velocities of both the WD and secondary surface have been measured, it is possible that other mass-transferring binaries also display similar velocity curves when observed with Kepler. These will provide additional valuable tests to either confirm or rule out small eccentricities in similar systems.
Based on XMM--Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray sou rce correctly. Extensive multicolor photometric and medium- to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. We found firm evidence of discording spectroscopic (81.29+/-0.01m) and photometric (83.599+/-0.002m) periods that we ascribe to the white dwarf (WD) spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength-dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).
Delta Scuti ($delta$ Sct) stars have been extensively studied in our Galaxy, but far less in extragalactic systems. Here we study the population of $delta$ Sct variables in NGC 419, an intermediate-age globular cluster of the Small Magellanic Cloud ( SMC), using $g,r,i$ Gemini-S/GMOS time series observations. Our goal is to study the role of such variables in the cluster extended main-sequence turnoff (MSTO). We report the discovery of 54 $delta$ Sct stars and three eclipsing binaries in the NGC 419 field. We find only a handful of the $delta$ Sct stars at the MSTO of NGC 419 while the majority is fainter, indicating that the cluster is younger ($lesssim 1.2$ Gyr) than previously thought. Considering their radial distribution, we identify only six $delta$ Sct stars as probable members of NGC 419 while the 48 remaining are likely $delta$ Sct stars of the SMC field. Cluster $delta$ Sct stars appear close to the red edge of the MSTO, supporting the idea that the extended MSTO has its origin in an age spread. The 48 field $delta$ Sct stars represent the largest detection of $delta$ Sct stars made in the SMC. The period distribution of these newly detected $delta$ Sct stars ($0.04 lesssim P lesssim 0.15$ d) is similar to that detected in other systems. The amplitude distribution ($0.05 lesssim Delta r lesssim 0.60$ mag) is likely biased because of the lack of low-amplitude stars. We finally use the $delta$ Sct stars to calculate distances using different period-luminosity relations. The average distance moduli obtained are $18.76pm0.14$ mag for NGC 419 and $18.86pm0.11$ mag for the SMC field, which agree with previous measurements.
The Kepler spacecraft observed a total of only four AM Herculis cataclysmic variable stars during its lifetime. We analyze the short-cadence K2 light curve of one of those systems, Tau 4 (RX J0502.8+1624), which underwent a serendipitous jump from a low-accretion state into a high state during the final days of the observation. Apart from one brief flare, there was no evidence of accretion during the 70 d of observations of the low state. As Tau 4 transitioned into a high state, the resumption of accretion was very gradual, taking approximately six days (~90 binary orbits). We supplement Tau 4s K2 light curve with time-resolved spectroscopy obtained in both high and low states of accretion. High-excitation lines, such as He II 468.6 nm, were extraordinarily weak, even when the system was actively accreting. This strongly suggests the absence of an accretion shock, placing Tau 4 in the bombardment regime predicted for AM Herculis systems with low accretion rates. In both the high-state and low-state spectra, Zeeman absorption features from the white dwarfs photosphere are present and reveal a surface-averaged field strength of $15pm2$ MG. Remarkably, the high-state spectra also show Zeeman-split emission lines produced in a region with a field strength of $12pm1$ MG. Zeeman emission has not been previously reported in an AM Herculis system, and we propose that the phenomenon is caused by a temperature inversion in the WDs atmosphere near the accretion region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا