ﻻ يوجد ملخص باللغة العربية
The ultra-wide bandgap, high breakdown electric field, and large-area affordable substrates make b{eta}-Ga2O3 promising for applications of next-generation power electronics while its thermal conductivity is at least one order of magnitude lower than other wide/ultrawide bandgap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, aggressive thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline b{eta}-Ga2O3 thin films on high thermal conductivity SiC substrates by ion-cutting technique. The thermal boundary conductance (TBC) of the b{eta}-Ga2O3-SiC interfaces and thermal conductivity of the b{eta}-Ga2O3 thin films were measured by Time-domain Thermoreflectance (TDTR) to evaluate the effects of interlayer thickness and thermal annealing. Materials characterizations were performed to understand the mechanisms of thermal transport in these structures. The results show that the b{eta}-Ga2O3-SiC TBC values increase with decreasing interlayer thickness and the b{eta}-Ga2O3 thermal conductivity increases more than twice after annealing at 800 oC due to the removal of implantation-induced strain in the films. A Callaway model is built to understand the measured thermal conductivity. Small spot-to-spot variations of both TBC and Ga2O3 thermal conductivity confirm the uniformity and high-quality of the bonding and exfoliation. Our work paves the way for thermal management of power electronics and b{eta}-Ga2O3 related semiconductor devices.
Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (>5,000 cm2 V-1 s-1) mobility devices with reliable
We report on low-temperature MOVPE growth of silicon delta-doped b{eta}-Ga2O3 films with low FWHM. The as-grown films are characterized using Secondary-ion mass spectroscopy, Capacitance-Voltage and Hall techniques. SIMS measurements show that surfac
Magnetic refrigeration based on the magnetocaloric effect at room temperature is one of the most attractive alternative to the current gas compression/expansion method routinely employed. Nevertheless, in giant magnetocaloric materials, optimal refri
We demonstrate that the confocal laser scanning microscopy (CLSM) provides a non-destructive, highly-efficient characterization method for large-area epitaxial graphene and graphene nanostructures on SiC substrates, which can be applied in ambient ai
We report on the growth and characterization of metalorganic vapor-phase epitaxy-grown b{eta}-(AlxGa1-x)2O3/b{eta}-Ga2O3 modulation-doped heterostructures. Electron channel is realized in the heterostructure by utilizing a delta-doped b{eta}-(AlxGa1-