ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are a recent cosmological probe. The precision and accuracy of the cosmological parameters inferred from these objects are affected by the knowledge of cluster physics, entering the analysis through the mass-observable scaling relations, and the theoretical description of their mass and redshift distribution, modelled by the mass function. In this work, we forecast the impact of different modelling of these ingredients for clusters detected by future optical and near-IR surveys. We consider the standard cosmological scenario and the case with a time-dependent equation of state for dark energy. We analyse the effect of increasing accuracy on the scaling relation calibration, finding improved constraints on the cosmological parameters. This higher accuracy exposes the impact of the mass function evaluation, which is a subdominant source of systematics for current data. We compare two different evaluations for the mass function. In both cosmological scenarios, the use of different mass functions leads to biases in the parameter constraints. For the $Lambda$CDM model, we find a $1.6 , sigma$ shift in the $(Omega_m,sigma_8)$ parameter plane and a discrepancy of $sim 7 , sigma$ for the redshift evolution of the scatter of the scaling relations. For the scenario with a time-evolving dark energy equation of state, the assumption of different mass functions results in a $sim 8 , sigma$ tension in the $w_0$ parameter. These results show the impact, and the necessity for a precise modelling, of the interplay between the redshift evolution of the mass function and of the scaling relations in the cosmological analysis of galaxy clusters.
We perform forecasts for how baryon acoustic oscillation (BAO) scale and redshift-space distortion (RSD) measurements from future spectroscopic emission line galaxy (ELG) surveys such as Euclid are degraded in the presence of spectral line misidentif
Photometric galaxy surveys probe the late-time Universe where the density field is highly non-Gaussian. A consequence is the emergence of the super-sample covariance (SSC), a non-Gaussian covariance term that is sensitive to fluctuations on scales la
We perform a detailed forecast on how well a {sc Euclid}-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. W
Cosmological N-body simulations represent an excellent tool to study the formation and evolution of dark matter (DM) halos and the mechanisms that have originated the universal profile at the largest mass scales in the Universe. In particular, the co
(abridged) We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the $Lambda$CDM model. To complement large-angle polarization, we consider