ﻻ يوجد ملخص باللغة العربية
Piezoresponse Force Microscopy (PFM), as a powerful nanoscale characterization technique, has been extensively utilized to elucidate diverse underlying physics of ferroelectricity. However, the intensive study of conventional PFM has revealed a growing number of concerns and limitations which are largely challenging its validity and application. Herein, we developed a new advanced PFM technique, named Heterodyne Megasonic Piezoresponse Force Microscopy (HM-PFM), which uniquely uses 106 to 108 Hz high-frequency excitation and heterodyne method to measure the piezoelectric strain at nanoscale. We report that HM-PFM can unambiguously provide standard ferroelectric domain and hysteresis loop measurements, and an effective domain characterization with excitation frequency up to ~110 MHz has been realized. Most importantly, owing to the high-frequency and heterodyne scheme, the contributions from both electrostatic force and electrochemical strain can be significantly minimized in HM-PFM. Furthermore, a special difference-frequency piezoresponse frequency spectrum (DFPFS) measurement is developed on HM-PFM and a distinct DFPFS characteristic is observed on the materials with piezoelectricity. It is believed that HM-PFM can be an excellent candidate for the piezoelectric or ferroelectric studies where the conventional PFM results are highly controversial.
Hafnium oxide (HfO2)-based ferroelectrics offer remarkable promise for memory and logic devices in view of their compatibility with traditional silicon CMOS technology, high switchable polarization, good endurance and thickness scalability. These fac
To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electroelastic fields inside the material
We report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals from charged interfaces that verify a recent model in which dispersion between the fundamental and second harmonic beams modulates observed signal intensities
Domains walls and topological defects in ferroelectric materials have emerged as a powerful new paradigm for functional electronic devices including memory and logic. Similarly, wall interactions and dynamics underpin a broad range of mesoscale pheno
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributi