ﻻ يوجد ملخص باللغة العربية
While the trapezoidal formula can attain exponential convergence when applied to infinite integrals of bilateral rapidly decreasing functions, it is not capable of this in the case of unilateral rapidly decreasing functions. To address this issue, Stenger proposed the application of a conformal map to the integrand such that it transforms into bilateral rapidly decreasing functions. Okayama and Hanada modified the conformal map and provided a rigorous error bound for the modified formula. This paper proposes a further improved conformal map, with two rigorous error bounds provided for the improved formula. Numerical examples comparing the proposed and existing formulas are also given.
The Sinc approximation has shown high efficiency for numerical methods in many fields. Conformal maps play an important role in the success, i.e., appropriate conformal map must be employed to elicit high performance of the Sinc approximation. Approp
A high-order accurate quadrature rule for the discretization of boundary integral equations (BIEs) on closed smooth contours in the plane is introduced. This quadrature can be viewed as a hybrid of the spectral quadrature of Kress (1991) and the loca
In this paper a method is presented for evaluating the convolution of the Greens function for the Laplace operator with a specified function $rho(vec x)$ at all grid points in a rectangular domain $Omega subset {mathrm R}^{d}$ ($d = 1,2,3$), i.e. a s
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are estab
In this paper we propose a method for computing the Faddeeva function $w(z) := e^{-z^2}mathrm{erfc}(-i z)$ via truncated modified trapezoidal rule approximations to integrals on the real line. Our starting point is the method due to Matta and Reichel