ﻻ يوجد ملخص باللغة العربية
While Internet of Things (IoT) devices and sensors create continuous streams of information, Big Data infrastructures are deemed to handle the influx of data in real-time. One type of such a continuous stream of information is time series data. Due to the richness of information in time series and inadequacy of summary statistics to encapsulate structures and patterns in such data, development of new approaches to learn time series is of interest. In this paper, we propose a novel method, called pattern tree, to learn patterns in the times-series using a binary-structured tree. While a pattern tree can be used for many purposes such as lossless compression, prediction and anomaly detection, in this paper we focus on its application in time series estimation and forecasting. In comparison to other methods, our proposed pattern tree method improves the mean squared error of estimation.
Let ${X_n}_{n=0}^{infty}$ be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of $X_{n+1}$ based on the observations $X_i$, $0le ile n$ in a strongly consistent way. Bailey and Ryabko
The forward estimation problem for stationary and ergodic time series ${X_n}_{n=0}^{infty}$ taking values from a finite alphabet ${cal X}$ is to estimate the probability that $X_{n+1}=x$ based on the observations $X_i$, $0le ile n$ without prior know
Many modern data sets require inference methods that can estimate the shared and individual-specific components of variability in collections of matrices that change over time. Promising methods have been developed to analyze these types of data in s
Inferring linear dependence between time series is central to our understanding of natural and artificial systems. Unfortunately, the hypothesis tests that are used to determine statistically significant directed or multivariate relationships from ti
We develop a new Bayesian modelling framework for the class of higher-order, variable-memory Markov chains, and introduce an associated collection of methodological tools for exact inference with discrete time series. We show that a version of the co