ترغب بنشر مسار تعليمي؟ اضغط هنا

Pattern-Based Analysis of Time Series: Estimation

156   0   0.0 ( 0 )
 نشر من قبل Elyas Sabeti
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

While Internet of Things (IoT) devices and sensors create continuous streams of information, Big Data infrastructures are deemed to handle the influx of data in real-time. One type of such a continuous stream of information is time series data. Due to the richness of information in time series and inadequacy of summary statistics to encapsulate structures and patterns in such data, development of new approaches to learn time series is of interest. In this paper, we propose a novel method, called pattern tree, to learn patterns in the times-series using a binary-structured tree. While a pattern tree can be used for many purposes such as lossless compression, prediction and anomaly detection, in this paper we focus on its application in time series estimation and forecasting. In comparison to other methods, our proposed pattern tree method improves the mean squared error of estimation.



قيم البحث

اقرأ أيضاً

132 - G. Morvai , B. Weiss 2007
Let ${X_n}_{n=0}^{infty}$ be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of $X_{n+1}$ based on the observations $X_i$, $0le ile n$ in a strongly consistent way. Bailey and Ryabko proved that this is not possible even for ergodic binary time series if one estimates at all values of $n$. We propose a very simple algorithm which will make prediction infinitely often at carefully selected stopping times chosen by our rule. We show that under certain conditions our procedure is strongly (pointwise) consistent, and $L_2$ consistent without any condition. An upper bound on the growth of the stopping times is also presented in this paper.
The forward estimation problem for stationary and ergodic time series ${X_n}_{n=0}^{infty}$ taking values from a finite alphabet ${cal X}$ is to estimate the probability that $X_{n+1}=x$ based on the observations $X_i$, $0le ile n$ without prior know ledge of the distribution of the process ${X_n}$. We present a simple procedure $g_n$ which is evaluated on the data segment $(X_0,...,X_n)$ and for which, ${rm error}(n) = |g_{n}(x)-P(X_{n+1}=x |X_0,...,X_n)|to 0$ almost surely for a subclass of all stationary and ergodic time series, while for the full class the Cesaro average of the error tends to zero almost surely and moreover, the error tends to zero in probability.
Many modern data sets require inference methods that can estimate the shared and individual-specific components of variability in collections of matrices that change over time. Promising methods have been developed to analyze these types of data in s tatic cases, but very few approaches are available for dynamic settings. To address this gap, we consider novel models and inference methods for pairs of matrices in which the columns correspond to multivariate observations at different time points. In order to characterize common and individual features, we propose a Bayesian dynamic factor modeling framework called Time Aligned Common and Individual Factor Analysis (TACIFA) that includes uncertainty in time alignment through an unknown warping function. We provide theoretical support for the proposed model, showing identifiability and posterior concentration. The structure enables efficient computation through a Hamiltonian Monte Carlo (HMC) algorithm. We show excellent performance in simulations, and illustrate the method through application to a social synchrony experiment.
Inferring linear dependence between time series is central to our understanding of natural and artificial systems. Unfortunately, the hypothesis tests that are used to determine statistically significant directed or multivariate relationships from ti me-series data often yield spurious associations (Type I errors) or omit causal relationships (Type II errors). This is due to the autocorrelation present in the analysed time series -- a property that is ubiquitous across diverse applications, from brain dynamics to climate change. Here we show that, for limited data, this issue cannot be mediated by fitting a time-series model alone (e.g., in Granger causality or prewhitening approaches), and instead that the degrees of freedom in statistical tests should be altered to account for the effective sample size induced by cross-correlations in the observations. This insight enabled us to derive modified hypothesis tests for any multivariate correlation-based measures of linear dependence between covariance-stationary time series, including Granger causality and mutual information with Gaussian marginals. We use both numerical simulations (generated by autoregressive models and digital filtering) as well as recorded fMRI-neuroimaging data to show that our tests are unbiased for a variety of stationary time series. Our experiments demonstrate that the commonly used $F$- and $chi^2$-tests can induce significant false-positive rates of up to $100%$ for both measures, with and without prewhitening of the signals. These findings suggest that many dependencies reported in the scientific literature may have been, and may continue to be, spuriously reported or missed if modified hypothesis tests are not used when analysing time series.
We develop a new Bayesian modelling framework for the class of higher-order, variable-memory Markov chains, and introduce an associated collection of methodological tools for exact inference with discrete time series. We show that a version of the co ntext tree weighting algorithm can compute the prior predictive likelihood exactly (averaged over both models and parameters), and two related algorithms are introduced, which identify the a posteriori most likely models and compute their exact posterior probabilities. All three algorithms are deterministic and have linear-time complexity. A family of variable-dimension Markov chain Monte Carlo samplers is also provided, facilitating further exploration of the posterior. The performance of the proposed methods in model selection, Markov order estimation and prediction is illustrated through simulation experiments and real-world applications with data from finance, genetics, neuroscience, and animal communication. The associated algorithms are implemented in the R package BCT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا