ﻻ يوجد ملخص باللغة العربية
Moire engineering as a configuration method to twist van der Waals materials has delivered a series of advances in electronics, magnetics and optics. Yet these advances stem from peculiar moire superlattices which form at small specific twisting angles. Here we report the configuration of nanoscale light-matter waves-the polaritons-by twisting stacked $alpha$-phase molybdenum trioxide $alpha$-MoO3 slabs in the broad range of 0$^o$ to 90$^o$. Our combined experimental and theoretical results reveal a variety of polariton wavefront geometry and topological transitions via the twisting. The polariton twisting configuration is attributed to the electromagnetic interaction of highly anisotropic hyperbolic polaritons in stacked $alpha$-MoO3 slabs. The nano-polaritons demonstrated in twisted $alpha$-MoO3 hold the promise as tailored nano-light for on-demand nanophotonic functionalities.
The exploitation of phonon-polaritons in nanostructured materials offers a pathway to manipulate infrared (IR) light for nanophotonic applications. Notably, hyperbolic phonons polaritons (HP2) in polar bidimensional crystals have been used to demonst
Hyperbolic phonon polaritons (HPhPs) in orthorhombic-phase molybdenum trioxide ($alpha$-MoO3) show in-plane hyperbolicity, great wavelength compression and ultra-long lifetime, therefore holding great potential in nanophotonic applications. However,
Highly confined and low-loss hyperbolic phonon polaritons (HPhPs) sustained in van der Waals crystals exhibit outstanding capabilities of concentrating long-wave electromagnetic fields deep to the subwavelength region. Precise tuning on the HPhP prop
Surface phonon polaritons (SPhPs) in polar dielectrics offer new opportunities for infrared nanophotonics due to sub-diffraction confinement with low optical losses. Though the polaritonic field confinement can be significantly improved by modifying
Hyperbolic phonon polaritons (HPhPs) sustained in van der Waals (vdW) materials exhibit extraordinary capabilities of confining long-wave electromagnetic fields to the deep subwavelength scale. In stark contrast to the uniaxial vdW hyperbolic materia