On default priors for robust Bayesian estimation with divergences


الملخص بالإنكليزية

This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $gamma$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by using quasi-posterior distributions based on divergences have been also proposed in recent years. In objective Bayesian framework, the selection of default prior distributions under such quasi-posterior distributions is an important problem. In this study, we provide some properties of reference and moment matching priors under the quasi-posterior distribution based on the $gamma$-divergence. In particular, we show that the proposed priors are approximately robust under the condition on the contamination distribution without assuming any conditions on the contamination ratio. Some simulation studies are also presented.

تحميل البحث