ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons

70   0   0.0 ( 0 )
 نشر من قبل Nacho Pascual
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated to localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between tip and sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them basic elements of spintronic devices.



قيم البحث

اقرأ أيضاً

In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-or bit coupling smoothly modulated near the system edges. We show that this space modulation leads to the appearance of Volkov-Pankratov states, in addition to the topologically protected ones. We obtain this result by means of two complementary methods, one based on the effective low-energy Dirac equation description and the other on a fully numerical tight-binding approach, finding excellent agreement between the two. We then show how transport measurements might reveal the presence of Volkov-Pankratov states, and discuss possible graphene-like structures in which such states might be observed.
The search of new means of generating and controlling topological states of matter is at the front of many joint efforts, including bandgap engineering by doping and light-induced topological states. Most of our understading, however, is based on a s ingle particle picture. Topological states in systems including interaction effects, such as electron-electron and electron-phonon, remain less explored. By exploiting a non-perturbative and non-adiabatic picture, here we show how the interaction between electrons and a coherent phonon mode can lead to a bandgap hosting edge states of topological origin. Further numerical simulations witness the robustness of these states against different types of disorder. Our results contribute to the search of topological states, in this case in a minimal Fock space.
We extensively characterize the electronic structure of ultra-narrow graphene nanoribbons (GNRs) with armchair edges and zig-zag termini that have 5 carbon atoms across their width (5-AGNRs), as synthesised on Au(111). Scanning tunnelling spectroscop y measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localised at the zig-zag termini of the nanoribbons. Besides rationalising the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behaviour of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.
91 - L. Brey , H.A. Fertig 2006
We study the electronic states of narrow graphene ribbons (``nanoribbons) with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP), move away one from the other. Otherwise, the Fermi velocity decrease by increasing rippling. Regarding the AGNRs, whose metallic behavior depends on their width, we analyze in particular the case of the zero gap band-structure AGNRs. By solving the Dirac equation with the adequate boundary condition we show that due to the shifting of the DP a gap opens in the spectra. This gap scale with the square of the rate between the high and the wavelength of the deformation. We confirm this prediction by exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the non equilibrium Greens function technique vanish when the gap open. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR independent of their width.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا