ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular modeling of aqueous electrolytes at interfaces: effects of long-range dispersion forces and of ionic charge rescaling

184   0   0.0 ( 0 )
 نشر من قبل Laurent Joly
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular dynamics simulations of aqueous electrolytes generally rely on empirical force fields, combining dispersion interactions - described by a truncated Lennard-Jones (LJ) potential - and electrostatic interactions - described by a Coulomb potential computed with a long-range solver. Recently, force fields using rescaled ionic charges (electronic continuum correction, ECC), possibly complemented with rescaling of LJ parameters (electronic continuum correction rescaled, ECCR), have shown promising results in bulk, but their performance at interfaces has been less explored. Here we started by exploring the impact of the LJ potential truncation on the surface tension of a sodium chloride aqueous solution. We show a discrepancy between the numerical predictions for truncated LJ interactions with a large cutoff and for untruncated LJ interactions computed with a long-range solver, which can bias comparison of force field predictions with experiments. Using a long-range solver for LJ interactions, we then show that an ionic charge rescaling factor chosen to correct long-range electrostatic interactions in bulk also describes accurately image charge repulsion at the liquid-vapor interface, and that the rescaling of LJ parameters in ECCR models - aimed at capturing local ion-ion and ion-water interactions in bulk - also describes well the formation of an ionic double layer at the liquid-vapor interface. Overall, these results suggest that the molecular modeling of aqueous electrolytes at interfaces would benefit from using long-range solvers for dispersion forces, and from using ECCR models, where the charge rescaling factor should be chosen to correct long-range electrostatic interactions.



قيم البحث

اقرأ أيضاً

We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-li ke fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
89 - Ivo Nezbeda 2016
Although aqueous electrolytes are among the most important solutions, the molecular simulation of their intertwined properties of chemical potentials, solubility and activity coefficients has remained a challenging problem, and has attracted consider able recent interest. In this perspectives review, we focus on the simplest case of aqueous sodium chloride at ambient conditions and discuss the two main factors that have impeded progress. The first is lack of consensus with respect to the appropriate methodology for force field (FF) development. We examine how most commonly used FFs have been developed, and emphasize the importance of distinguishing between Training Set Properties used to fit the FF parameters, and Test Set Properties, which are pure predictions of additional properties. The second is disagreement among solubility results obtained, even using identical FFs and thermodynamic conditions. Solubility calculations have been approached using both thermodynamic--based methods and direct molecular dynamics--based methods implementing coexisting solution and solid phases. Although convergence has been very recently achieved among results based on the former approach, there is as yet no general agreement with simulation results based on the latter methodology. We also propose a new method to directly calculate the electrolyte standard chemical potential in the Henry-Law ideality model. We conclude by making recommendations for calculating solubility, chemical potentials and activity coefficients, and outline a potential path for future progress.
148 - M. Bonetti , S. Nakamae , M. Roger 2011
The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C . The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or structure making effects of tetraalkylammonium ions on the structure of alcohols.
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper-oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant x-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La$_{2/3}$Ca$_{1/3}$MnO$_3$ greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa$_2$Cu$_3$O$_{6+delta}$ ($bf delta sim 1$), and that this effect persists over several tens of nm. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge density wave state in the cuprates, and more generally, to manipulate the interplay between different collective phenomena in metal oxides.
We consider a model for periodic patterns of charges constrained over a cylindrical surface. In particular we focus on patterns of chiral helices, achiral rings or vertical lamellae, with the constraint of global electroneutrality. We study the depen dence of the patterns size and pitch angle on the radius of the cylinder and salt concentration. We obtain a phase diagram by using numerical and analytic techniques. For pure Coulomb interactions, we find a ring phase for small radii and a chiral helical phase for large radii. At a critical salt concentration, the characteristic domain size diverges, resulting in macroscopic phase segregation of the components and restoring chiral symmetry. We discuss possible consequences and generalizations of our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا