ﻻ يوجد ملخص باللغة العربية
SmO thin film is a new Kondo system showing a resistivity upturn around 10 K and was theoretically proposed to have a topologically nontrivial band structure. We have performed hard x-ray and soft x-ray photoemission spectroscopy to elucidate the electronic structure of SmO. From the Sm 3$d$ core-level spectra, we have estimated the valence of Sm to be $sim$2.96, proving that the Sm has a mixed valence. The valence-band photoemission spectra exhibit a clear Fermi edge originating from the Sm 5$d$-derived band. The present finding is consistent with the theory suggesting a possible topological state in SmO and show that rare-earth monoxides or their heterostructures can be a new playground for the interplay of strong electron correlation and spin-orbit coupling.
The strain effect from a substrate is an important experimental route to control electronic and magnetic properties in transition-metal oxide (TMO) thin films. Using hard x-ray photoemission spectroscopy, we investigate the strain dependence of the v
We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO$_3$ (SRO) thin films using textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light band
Bulk sensitive hard x-ray photoelectron spectroscopy data of the Ce 3$p$ core level of CeRu$_4$Sn$_6$ are presented. Using a combination of full multiplet and configuration iteration model we were able to obtain an accurate lineshape analysis of the
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio
Bulk-sensitive hard x-ray photoemission spectroscopy (HAXPES) reveals for as-grown epitaxial films of half-metallic ferromagnetic CrO2(100) a pronounced screening feature in the Cr 2p3/2 core level and an asymmetry in the O 1s core level. This gives