ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Parameter Estimation from the Two-Dimensional Genus Topology -- Measuring the Shape of the Matter Power Spectrum

89   0   0.0 ( 0 )
 نشر من قبل Stephen Appleby
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the two-dimensional genus of the SDSS-III BOSS catalogs to constrain cosmological parameters governing the shape of the matter power spectrum. The BOSS data are divided into twelve concentric shells over the redshift range $0.2 < z < 0.6$, and we extract the genus from the projected two-dimensional galaxy density fields. We compare the genus amplitudes to their Gaussian expectation values, exploiting the fact that this quantity is relatively insensitive to non-linear gravitational collapse. The genus amplitude provides a measure of the shape of the linear matter power spectrum, and is principally sensitive to $Omega_{rm c}h^{2}$ and scalar spectral index $n_{rm s}$. A strong negative degeneracy between $Omega_{rm c}h^{2}$ and $n_{rm s}$ is observed, as both can increase small scale power by shifting the peak and tilting the power spectrum respectively. We place a constraint on the particular combination $n_{rm s}^{3/2} Omega_{rm c}h^{2}$ -- we find $n_{rm s}^{3/2} Omega_{rm c}h^{2} = 0.1121 pm 0.0043$ after combining the LOWZ and CMASS data sets, assuming a flat $Lambda$CDM cosmology. This result is practically insensitive to reasonable variations of the power spectrum amplitude and linear galaxy bias. Our results are consistent with the Planck best fit $n_{rm s}^{3/2}Omega_{rm c}h^{2} = 0.1139 pm 0.0009$.



قيم البحث

اقرأ أيضاً

We measure the genus of the galaxy distribution in two-dimensional slices of the SDSS-III BOSS catalog to constrain the cosmological parameters governing the expansion history of the Universe. The BOSS catalogs are divided into twelve concentric shel ls over the redshift range $0.25 < z < 0.6$ and we repeatedly measure the genus from the two-dimensional galaxy density fields, each time varying the cosmological parameters used to infer the distance-redshift relation to the shells. We also indirectly reconstruct the two-dimensional genus amplitude using the three-dimensional genus measured from SDSS Main Galaxy Sample with galaxies at low redshift $z < 0.12$. We combine the low- and high-redshift measurements, finding the cosmological model which minimizes the redshift evolution of the genus amplitude, using the fact that this quantity should be conserved. Being a distance measure, the test is sensitive to the matter density parameter ($Omega_{rm m}$) and equation of state of dark energy ($w_{rm de}$). We find a constraint of $w_{rm de} = -1.05^{+0.13}_{-0.12}$, $Omega_{rm m} = 0.303 pm 0.036$ after combining the high- and low-redshift measurements and combining with Planck CMB data. Higher redshift data and combining data sets at low redshift will allow for stronger constraints.
The large-scale structure of the Universe should soon be measured at high redshift during the Epoch of Reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluct uations in the intergalactic medium (IGM) during the EoR. These may be fruitfully combined with separate efforts to measure large-scale emission fluctuations from galactic lines such as [CII], CO, H-$alpha$, and Ly-$alpha$ during the same epoch. The large scale power spectrum of each line encodes important information about reionization, with the 21 cm power spectrum providing a relatively direct tracer of the ionization history. Here we show that the large scale 21 cm power spectrum can be extracted using only cross-power spectra between the 21 cm fluctuations and each of two separate line-intensity mapping data cubes. This technique is more robust to residual foregrounds than the usual 21 cm auto-power spectrum measurements and so can help in verifying auto-spectrum detections. We characterize the accuracy of this method using numerical simulations and find that the large-scale 21 cm power spectrum can be inferred to an accuracy of within 5% for most of the EoR, reaching 0.6% accuracy on a scale of $ksim0.1,text{Mpc}^{-1}$ at $left< x_i right> = 0.36$ ($z = 8.34$ in our model). An extension from two to $N$ additional lines would provide $N(N-1)/2$ cross-checks on the large-scale 21 cm power spectrum. This work strongly motivates redundant line-intensity mapping surveys probing the same cosmological volumes.
We study the topology of the matter density field in two dimensional slices, and consider how we can use the amplitude $A$ of the genus for cosmological parameter estimation. Using the latest Horizon Run 4 simulation data, we calculate the genus of t he smoothed density field constructed from lightcone mock galaxy catalogs. Information can be extracted from the amplitude of the genus by considering both its redshift evolution and magnitude. The constancy of the genus amplitude with redshift can be used as a standard population, from which we derive constraints on the equation of state of dark energy $w_{rm de}$ - by measuring $A$ at $z sim 0.1$ and $z sim 1$, we can place an order $Delta w_{rm de} sim {cal O}(15%)$ constraint on $w_{rm de}$. By comparing $A$ to its Gaussian expectation value we can potentially derive an additional stringent constraint on the matter density $Delta Omega_{rm mat} sim 0.01$. We discuss the primary sources of contamination associated with the two measurements - redshift space distortion and shot noise. With accurate knowledge of galaxy bias, we can successfully remove the effect of redshift space distortion, and the combined effect of shot noise and non-linear gravitational evolution is suppressed by smoothing over suitably large scales $R_{rm G} ge 15 {rm Mpc}/h$. Without knowledge of the bias, we discuss how joint measurements of the two and three dimensional genus can be used to constrain the growth factor $beta = f/b$. The method can be applied optimally to redshift slices of a galaxy distribution generated using the drop-off technique.
Accurate cosmology from upcoming weak lensing surveys relies on knowledge of the total matter power spectrum at percent level at scales $k < 10$ $h$/Mpc, for which modelling the impact of baryonic physics is crucial. We compare measurements of the to tal matter power spectrum from the Horizon cosmological hydrodynamical simulations: a dark matter-only run, one with full baryonic physics, and another lacking Active Galactic Nuclei (AGN) feedback. Baryons cause a suppression of power at $ksimeq 10$ $h/$Mpc of $<15%$ at $z=0$, and an enhancement of a factor of a few at smaller scales due to the more efficient cooling and star formation. The results are sensitive to the presence of the highest mass haloes in the simulation and the distribution of dark matter is also impacted up to a few percent. The redshift evolution of the effect is non-monotonic throughout $z=0-5$ due to an interplay between AGN feedback and gas pressure, and the growth of structure. We investigate the effectiveness of an analytic `baryonic correction model in describing our results. We require a different redshift evolution and propose an alternative fitting function with $4$ free parameters that reproduces our results within $5%$. Compared to other simulations, we find the impact of baryonic processes on the total matter power spectrum to be smaller at $z=0$. Correspondingly, our results suggest that AGN feedback is not strong enough in the simulation. Total matter power spectra from the Horizon simulations are made publicly available at https://www.horizon-simulation.org/catalogues.html
Primordial gravitational waves generated during inflation lead to the B-mode polarization in the cosmic microwave background and a stochastic gravitational wave background in the Universe. We will explore the current constraint on the tilt of primord ial gravitational-wave spectrum, and forecast how the future observations can improve the current constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا