ﻻ يوجد ملخص باللغة العربية
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin coherent states to construct the corresponding Husimi-$Q$ quasi-probability distribution. The entropy of the $Q$-function, known as Wehrl entropy, provides a measure of the coarse-grained dynamics of the system and, therefore, evolves non-trivially even for closed systems. We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations. The former reflects the information scrambling characteristic of these transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo. Finally, we also study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to identify the relative contribution of the low energy sector to the emergence of DPTs. The results presented in this article are relevant not only from the dynamical quantum phase transition perspective, but also for the field of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of entropy production.
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, t
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponen
The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distributio
We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. W
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-the