AC Measurement of the Nernst effect of thin films at low temperatures


الملخص بالإنكليزية

We describe an alternating current method to measure the Nernst effect in superconducting thin films at low temperatures. The Nernst effect is an important tool in the understanding superconducting fluctuations and, in particular, vortex motion near critical points. However, in most materials, the Nernst signal in a typical experimental setup rarely exceeds a few $mu$V, in some cases being as low as a few nV. DC measurements of such small signals require extensive signal processing and protection against stray pickups and offsets, limiting the sensitivity of such measurements to $>$5nV. Here we describe a method utilizing a one-heater-two-thermometer setup with the heating element and thermometers fabricated on-chip with the sample, which helped to reduce thermal load and temperature lag between the substrate and thermometer. Using AC heating power and 2$omega$ measurement, we are able to achieve sub-nanovolt sensitivity in 20-30nm MoGe thin films on glass substrate, compared to a sensitivity of $sim$9nV using DC techniques on the same setup.

تحميل البحث