ﻻ يوجد ملخص باللغة العربية
The formation of shocks within the solar atmosphere remains one of the few observable signatures of energy dissipation arising from the plethora of magnetohydrodynamic waves generated close to the solar surface. Active region observations offer exceptional views of wave behavior and its impact on the surrounding atmosphere. The stratified plasma gradients present in the lower solar atmosphere allow for the potential formation of many theorized shock phenomena. In this study, using chromospheric Ca II 854.2nm spectropolarimetric data of a large sunspot, we examine fluctuations in the plasma parameters in the aftermath of powerful shock events that demonstrate polarimetric reversals during their evolution. Modern inversion techniques are employed to uncover perturbations in the temperatures, line-of-sight velocities, and vector magnetic fields occurring across a range of optical depths synonymous with the shock formation. Classification of these non-linear signatures is carried out by comparing the observationally-derived slow, fast, and Alfven shock solutions to the theoretical Rankine-Hugoniot relations. Employing over 200,000 independent measurements, we reveal that the Alfven (intermediate) shock solution provides the closest match between theory and observations at optical depths of log(tau) = -4, consistent with a geometric height at the boundary between the upper photosphere and lower chromosphere. This work uncovers first-time evidence of the manifestation of chromospheric intermediate shocks in sunspot umbrae, providing a new method for the potential thermalization of wave energy in a range of magnetic structures, including pores, magnetic flux ropes, and magnetic bright points.
Recent observations of sunspots umbra suggested that it may be finely structured at a sub-arcsecond scale representing a mix of hot and cool plasma elements. In this study we report the first detailed observations of the umbral spikes, which are cool
High-quality imaging spectroscopy in the H{alpha} line, obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) at La Palma and covering a small sunspot and its surroundings, are studied. They exhibit ubiqu
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic simulations in 1D have shown that high energy deposi
The effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, but yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modell
The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope