ﻻ يوجد ملخص باللغة العربية
In recent years, Markov logic networks (MLNs) have been proposed as a potentially useful paradigm for music signal analysis. Because all hidden Markov models can be reformulated as MLNs, the latter can provide an all-encompassing framework that reuses and extends previous work in the field. However, just because it is theoretically possible to reformulate previous work as MLNs, does not mean that it is advantageous. In this paper, we analyse some proposed examples of MLNs for musical analysis and consider their practical disadvantages when compared to formulating the same musical dependence relationships as (dynamic) Bayesian networks. We argue that a number of practical hurdles such as the lack of support for sequences and for arbitrary continuous probability distributions make MLNs less than ideal for the proposed musical applications, both in terms of easy of formulation and computational requirements due to their required inference algorithms. These conclusions are not specific to music, but apply to other fields as well, especially when sequential data with continuous observations is involved. Finally, we show that the ideas underlying the proposed examples can be expressed perfectly well in the more commonly used framework of (dynamic) Bayesian networks.
Our goal is to answer elementary-level science questions using knowledge extracted automatically from science textbooks, expressed in a subset of first-order logic. Given the incomplete and noisy nature of these automatically extracted rules, Markov
The assessment of music performances in most cases takes into account the underlying musical score being performed. While there have been several automatic approaches for objective music performance assessment (MPA) based on extracted features from b
In this paper, we define a novel census signal temporal logic (CensusSTL) that focuses on the number of agents in different subsets of a group that complete a certain task specified by the signal temporal logic (STL). CensusSTL consists of an inner l
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to lear
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these shallow architectures, feature engineering and learning are typically