ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sheet of Giants: Unusual Properties of the Milky Ways Immediate Neighbourhood

66   0   0.0 ( 0 )
 نشر من قبل Maria Neuzil
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify the shape and overdensity of the galaxy distribution in the `Local Sheet within a sphere of $R=8$ Mpc, and compare these properties with the expectations of the $Lambda$CDM model. We measure ellipsoidal axis ratios of $c/aapprox0.16$ and $b/aapprox0.79$, indicating that the distribution of galaxies in the Local Volume can be approximated by a flattened oblate ellipsoid, consistent with the `sheet-like configuration noted in previous studies. In contrast with previous estimates that the Local Sheet has a density close to average, we find that the number density of faint and bright galaxies in the Local Volume is $approx1.7$ and $approx5.2$ times denser, respectively, than the mean number density of galaxies of the same luminosity. Comparison with simulations shows that the number density contrasts of bright and faint galaxies within $8$ Mpc alone make the Local Volume a $approx 2.5sigma$ outlier in the $Lambda$CDM cosmology. Our results indicate that the cosmic neighbourhood of the Milky Way may be unusual for galaxies of similar luminosity. The impact of the peculiar properties of our neighbourhood on the properties of the Milky Way and other nearby galaxies is not yet understood and warrants further study.



قيم البحث

اقرأ أيضاً

Using combined asteroseismic and spectroscopic observations of 418 red-giant stars close to the Galactic disc plane (6 kpc $<R_{rm Gal}lesssim13$ kpc, $|Z_{rm Gal}|<0.3$ kpc), we measure the age dependence of the radial metallicity distribution in th e Milky Ways thin disc over cosmic time. The slope of the radial iron gradient of the young red-giant population ($-0.058pm0.008$ [stat.] $pm0.003$ [syst.] dex/kpc) is consistent with recent Cepheid measurements. For stellar populations with ages of $1-4$ Gyr the gradient is slightly steeper, at a value of $-0.066pm0.007pm0.002$ dex/kpc, and then flattens again to reach a value of $sim-0.03$ dex/kpc for stars with ages between 6 and 10 Gyr. Our results are in good agreement with a state-of-the-art chemo-dynamical Milky-Way model in which the evolution of the abundance gradient and its scatter can be entirely explained by a non-varying negative metallicity gradient in the interstellar medium, together with stellar radial heating and migration. We also offer an explanation for why intermediate-age open clusters in the Solar Neighbourhood can be more metal-rich, and why their radial metallicity gradient seems to be much steeper than that of the youngest clusters. Already within 2 Gyr, radial mixing can bring metal-rich clusters from the innermost regions of the disc to Galactocentric radii of 5 to 8 kpc. We suggest that these outward-migrating clusters may be less prone to tidal disruption and therefore steepen the local intermediate-age cluster metallicity gradient. Our scenario also explains why the strong steepening of the local iron gradient with age is not seen in field stars. In the near future, asteroseismic data from the K2 mission will allow for improved statistics and a better coverage of the inner-disc regions, thereby providing tighter constraints on the evolution of the central parts of the Milky Way.
We present a new, high-resolution chronographic (age) map of the Milky Ways halo, based on the inferred ages of ~130,000 field blue horizontal-branch (BHB) stars with photometry from the Sloan Digital Sky Survey. Our map exhibits a strong central con centration of BHB stars with ages greater than 12 Gyr, extending up to ~15 kpc from the Galactic center (reaching close to the solar vicinity), and a decrease in the mean ages of field stars with distance by 1-1.5 Gyr out to ~45-50 kpc, along with an apparent increase of the dispersion of stellar ages, and numerous known (and previously unknown) resolved over-densities and debris streams, including the Sagittarius Stream. These results agree with expectations from modern LambdaCDM cosmological simulations, and support the existence of a dual (inner/outer) halo system, punctuated by the presence of over-densities and debris streams that have not yet completely phase-space mixed.
In the age of high-resolution spectroscopic stellar surveys of the Milky Way, the number of stars with detailed abundances of multiple elements is rapidly increasing. These elemental abundances are directly influenced by the evolutionary history of t he Galaxy, but this can be difficult to interpret without an absolute timeline of the abundance enrichment. We present age-abundance trends for [M/H], [{alpha}/M], and 17 individual elements using a sample of 721 solar neighbourhood Hipparcos red giant stars observed by APOGEE. These age trends are determined through a Bayesian hierarchical modelling method presented by Feuillet et al. (2016). We confirm that the [{alpha}/M]- age relation in the solar neighbourhood is steep and relatively narrow (0.20 dex age dispersion), as are the [O/M]- and [Mg/M]-age relations. The age trend of [C/N] is steep and smooth, consistent with stellar evolution. The [M/H]-age relation has a mean age dispersion of 0.28 dex and a complex overall structure. The oldest stars in our sample are those with the lowest and highest metallicities, while the youngest stars are those with solar metallicity. These results provide strong constraints on theoretical models of Galactic chemical evolution (GCE). We compare them to the predictions of one-zone GCE mod- els and multi-zone mixtures, both analytic and numerical. These comparisons support the hypothesis that the solar neighbourhood is composed of stars born at a range of Galactocentric radii, and that the most metal-rich stars likely migrated from a region with earlier and more rapid star formation such as the inner Galaxy.
This is the second of three papers that search for the predicted stellar cusp around the Milky Ways central black hole, Sagittarius A*, with new data and methods. We aim to infer the distribution of the faintest stellar population currently accessibl e through observations around Sagittarius A*. We use adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we remove the light from all detected stars above a given magnitude limit. Subsequently we analyse the remaining, diffuse light density. The analysed diffuse light arises from sub-giant and main-sequence stars with KS ~ 19 - 20 with masses of 1 - 2 Msol . These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Ways central black hole. We find that a Nuker law provides an adequate description of the nuclear clusters intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is gamma = 1.23 +- 0.05. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.3 +- 0.3 x 10^7 Msol pc^-3 and a total enclosed stellar mass of 180 +- 20 Msol. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that no cusp is observed for bright (Ks 16) giant stars at projected distances of roughly 0.1-0.3 pc implies that some mechanism has altered their appearance or distribution.
We present an analysis of the radial age gradients for the stellar halos of five Milky Way mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately -7 to -19 Myr/kpc , shallower than those determined by recent observational studies of the Milky Ways stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from $-$8 to $-$32~Myr/kpc, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MWs halo age distribution if the stellar halo was assembled from accretion and disruption of satellite galaxies with dynamical masses less than ~10^9.5M_sun, and a minimal in situ contribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا