ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-phonon interfaces in coupled nanomechanical cantilevers

102   0   0.0 ( 0 )
 نشر من قبل Thomas Oeckinghaus
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. While, the ability of these systems to act as a quantum bus inducing long-range spin-spin interactions has been known, the possibility to coherently couple electron/nuclear spins to the common modes of multiple oscillators and map their mechanical motion to spin-polarization has not been experimentally demonstrated. We here report experiments on interfacing spins to the common modes of a coupled cantilever system, and show their correlation by translating ultra-low forces induced by radiation from one oscillator to a distant spin. Further, we analyze the coherent spin-spin coupling induced by the common modes and estimate the entanglement generation among distant spins.



قيم البحث

اقرأ أيضاً

Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro- and nano-cantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite it s use in nanoelectromechanical systems development. In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultra-linear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its predictions deviate strongly from our measurements for the nonlinearity of the fundamental flexural mode, which show a systematic dependence on aspect ratio (length/width) together with random scatter. This contrasts with the second mode, which is always found to be in good agreement with theory. These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation.
We investigate the coupling of a nanomechanical oscillator in the quantum regime with molecular (electric) dipoles. We find theoretically that the cantilever can produce single-mode squeezing of the center-of-mass motion of an isolated trapped molecu le and two-mode squeezing of the phonons of an array of molecules. This work opens up the possibility of manipulating dipolar crystals, which have been recently proposed as quantum memory, and more generally, is indicative of the promise of nanoscale cantilevers for the quantum detection and control of atomic and molecular systems.
219 - I. Wilson-Rae 2008
State of the art nanomechanical resonators present quality factors Q ~ 10^3 - 10^5, which are much lower than those that can be naively extrapolated from the behavior of micromechanical resonators. We analyze the dissipation mechanism that arises in nanomechanical beam-structures due to the tunneling of mesoscopic phonons between the beam and its supports (known as clamping losses). We derive the environmental force spectral density that determines the quantum Brownian motion of a given resonance. Our treatment is valid for low frequencies and provides the leading contribution in the aspect ratio. This yields fundamental limits for the Q-values which are described by simple scaling laws and are relevant for state of the art experimental structures. In this context, for resonant frequencies in the 0.1-1GHz range, while this dissipation mechanism can limit flexural resonators it is found to be negligible for torsional ones. In the case of structureless 3D supports the corresponding environmental spectral densities are Ohmic for flexural resonators and super-Ohmic for torsional ones, while for 2D slab supports they yield 1/f noise. Furthermore analogous results are established for the case of suspended semiconducting single-walled carbon nanotubes. Finally, we provide a general expression for the spectral density that allows to extend our treatment to other geometries and illustrate its use by applying it to a microtoroid. Our analysis is relevant for applications in high precision measurements and for the prospects of probing quantum effects in a macroscopic mechanical degree of freedom.
468 - Chulki Kim , Marta Prada , 2011
We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling.
Phonon-induced spin relaxation in coupled lateral quantum dots in the presence of spin-orbit coupling is calculated. The calculation for single dots is consistent with experiment. Spin relaxation in double dots at useful interdot couplings is dominat ed by spin hot spots that are strongly anisotropic. Spin hot spots are ineffective for a diagonal crystallographic orientation of the dots with a transverse in-plane field. This geometry is proposed for spin-based quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا