ﻻ يوجد ملخص باللغة العربية
We study the dynamical properties of a large body of varying vacuum cosmologies for which dark matter interacts with vacuum. In particular, performing the critical point analysis we investigate the existence and the stability of cosmological solutions which describe de-Sitter, radiation and matter dominated eras. We find several cases of varying vacuum models that admit stable critical points, hence they can be used in describing the cosmic history.
In the context of Finsler-Randers theory we consider, for a first time, the cosmological scenario of the varying vacuum. In particular, we assume the existence of a cosmological fluid source described by an ideal fluid and the varying vacuum terms. W
In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is th
We investigate the dynamical features of a large family of running vacuum cosmologies for which $Lambda$ evolves as a polynomial in the Hubble parameter. Specifically, using the critical point analysis we study the existence and the stability of sing
It has been suggested that the cosmological constant is a variable dynamical quantity. A class of solution has been presented for the spherically symmetric space time describing wormholes by assuming the erstwhile cosmological constant $Lambda$ to be