ﻻ يوجد ملخص باللغة العربية
We performed detailed spectroscopic analyses of a young C-rich planetary nebula (PN) Jonckheere900 (J900) in order to characterise the properties of the central star and nebula. Of the derived 17 elemental abundances, we present the first determination of eight elemental abundances. We present the first detection of the [F IV] 4059.9 A, [F V] 13.4 um, and [Rb IV] 5759.6 A lines in J900. J900 exhibits a large enhancement of F and neutron-capture elements Se, Kr, Rb, and Xe. We investigated the physical conditions of the H2 zone using the newly detected mid-IR H2 lines while also using the the previously measured near-IR H2 lines, which indicate warm (~670 K) and hot (~3200 K) temperature regions. We built the spectral energy distribution (SED) model to be consistent with all the observed quantities. We found that about 67 % of all dust and gas components (4.5x10^-4 Msun and 0.83 Msun, respectively) exists beyond the ionisation front, indicating critical importance of photodissociation regions in understanding stellar mass loss. The best-fitting SED model indicates that the progenitor evolved from an initially ~2.0 Msun star which had been in the course of the He-burning shell phase. Indeed, the derived elemental abundance pattern is consistent with that predicted by a asymptotic giant branch star nucleosynthesis model for a 2.0 Msun star with Z = 0.003 and partial mixing zone mass of 6.0x10^-3 Msun. Our study demonstrates how accurately determined abundances of C/F/Ne/neutron-capture elements and gas/dust masses help us understand the origin and the internal evolution of the PN progenitors.
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f
We present near-infrared spectra of ten planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5-m Baade and 8.1-m Gemini South Telescopes, respectively. We detect Se an
We have carried out a detailed analysis of the interesting and important very young planetary nebula (PN) Hen3-1357 (Stingray Nebula) based on a unique dataset of optical to far-IR spectra and photometric images. We calculated the abundances of nine
We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections, and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients
We present multi-configuration Breit-Pauli distorted-wave photoionization (PI) cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six krypton ions. These were calculated with the AUTOST