ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron g-factor engineering for non-reciprocal spin photonics

88   0   0.0 ( 0 )
 نشر من قبل Parijat Sengupta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the interplay of electron and photon spin in non-reciprocal materials. Traditionally, the primary mechanism to design non-reciprocal photonic devices has been magnetic fields in conjunction with magnetic oxides, such as iron garnets. In this work, we present an alternative paradigm that allows tunability and reconfigurability of the non-reciprocity through spintronic approaches. The proposed design uses the high-spin-orbit coupling of a narrow-band gap semiconductor (InSb) with ferromagnetic dopants. A combination of the intrinsic and a gate-applied electric field gives rise to a strong external Rashba spin-orbit coupling (RSOC) in a magnetically doped InSb film. The RSOC which is gate alterable is shown to adjust the magnetic permeability tensor via the electron g-factor of the medium. We use electronic band structure calculations (k$cdot$p theory) to show the gate-adjustable RSOC manifest itself in the non-reciprocal coefficient of photon fields via shifts in the Kerr and Faraday rotations. In addition, we show that photon spin properties of dipolar emitters placed in the vicinity of a non-reciprocal electromagnetic environment is distinct from reciprocal counterparts. The Purcell factor (F$_{p}$) of a spin-polarized emitter (right-handed circular dipole) is significantly enhanced due to a larger g-factor while a left-handed dipole remains essentially unaffected. Our work can lead to electron spin controlled reconfigurable non-reciprocal photonic devices.



قيم البحث

اقرأ أيضاً

Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains under-explored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinni ng at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 ${mu}A/{mu}m$ at 80 K and >200 ${mu}A/{mu}m$ at 300 K) and relatively low contact resistance (1.2 to 2 $k{Omega}cdot{mu}m$ from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals, extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer h-BN between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly de-pin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.
Arrays of spin-torque nano-oscillators are promising for broadband microwave signal detection and processing, as well as for neuromorphic computing. In many of these applications, the oscillators should be engineered to have equally-spaced frequencie s and equal sensitivity to microwave inputs. Here we design spin-torque nano-oscillator arrays with these rules and estimate their optimum size for a given sensitivity, as well as the frequency range that they cover. For this purpose, we explore analytically and numerically conditions to obtain vortex spin-torque nano-oscillators with equally-spaced gyrotropic oscillation frequencies and having all similar synchronization bandwidths to input microwave signals. We show that arrays of hundreds of oscillators covering ranges of several hundred MHz can be built taking into account nanofabrication constraints.
190 - Y. Kubo , I. Diniz , C. Grezes 2012
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11} spins.
Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3$cdot$10$^{-8}$m$^2$/V$^2$, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to $sim$1% using a moderate field strength of $sim$30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9$^{rm th}$ harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications.
We propose an approach to engineer quartic metamaterials starting from the desired photonic states. We apply our method to the design of the high-k asymptotics of metamaterials, extreme non-reciprocity and complex bi-anisotropic media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا