Reduced density matrix of nonlocal identical particles


الملخص بالإنكليزية

We probe the theoretical connection among three different approaches to analyze the entanglement of identical particles, i.e., the first quantization language (1QL), elementary-symmetric/exterior products (which has the mathematical equivalence to no-labeling approaches), and the algebraic approach based on the GNS construction. Among several methods to quantify the entanglement of identical particles, we focus on the computation of reduced density matrices, which can be achieved by the concept of emph{symmetrized partial trace} defined in 1QL. We show that the symmetrized partial trace corresponds to the interior product in symmetric and exterior algebra (SEA), which also corresponds to the subalgebra restriction in the algebraic approach based on GNS representation. Our research bridges different viewpoints for understanding the quantum correlation of identical particles in a consistent manner.

تحميل البحث