ﻻ يوجد ملخص باللغة العربية
We present a comprehensive analysis of the dispersion relations for the doubly-virtual process $gamma^*gamma^*topipi$. Starting from the Bardeen-Tung-Tarrach amplitudes, we first derive the kernel functions that define the system of Roy-Steiner equations for the partial-wave helicity amplitudes. We then formulate the solution of these partial-wave dispersion relations in terms of Omn`es functions, with special attention paid to the role of subtraction constants as critical for the application to hadronic light-by-light scattering. In particular, we explain for the first time why for some amplitudes the standard Muskhelishvili-Omn`es solution applies, while for others a modified approach based on their left-hand cut is required unless subtractions are introduced. In the doubly-virtual case, the analytic structure of the vector-resonance partial waves then gives rise to anomalous thresholds, even for space-like virtualities. We develop a strategy to account for these effects in the numerical solution, illustrated in terms of the $D$-waves in $gamma^*gamma^*topipi$, which allows us to predict the doubly-virtual responses of the $f_2(1270)$ resonance. In general, our results form the basis for the incorporation of two-meson intermediate states into hadronic light-by-light scattering beyond the $S$-wave contribution.
We present a dispersive analysis of the decay amplitude for $etatoetapipi$ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representati
Enlarging the set of hard exclusive reactions to be studied in the framework of QCD collinear factorization opens new possibilities to access generalized parton distributions (GPDs). We studied the photoproduction of a large invariant mass photon-pho
Starting from hyperbolic dispersion relations, we derive a system of Roy--Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying
If the fundamental mass scale of superstring theory is as low as few TeVs, the massive modes of vibrating strings, Regge excitations, will be copiously produced at the Large Hadron Collider (LHC). We discuss the complementary signals of low mass supe
We analyze the potential of the e+e- Linear Colliders, operating in the e-gamma and gamma-gamma modes, to probe anomalous quartic vector--boson interactions through the multiple production of Ws and Zs. We examine all $SU(2)_L otimes U(1)_Y$ chiral o