ﻻ يوجد ملخص باللغة العربية
The attenuation of long-wavelength phonons (waves) by glassy disorder plays a central role in various glass anomalies, yet it is neither fully characterized, nor fully understood. Of particular importance is the scaling of the attenuation rate $Gamma(k)$ with small wavenumbers $k!to!0$ in the thermodynamic limit of macroscopic glasses. Here we use a combination of theory and extensive computer simulations to show that the macroscopic low-frequency behavior emerges at intermediate frequencies in finite-size glasses, above a recently identified crossover wavenumber $k_dagger$, where phonons are no longer quantized into bands. For $k!<!k_dagger$, finite-size effects dominate $Gamma(k)$, which is quantitatively described by a theory of disordered phonon bands. For $k!>!k_dagger$, we find that $Gamma(k)$ is affected by the number of quasilocalized nonphononic excitations, a generic signature of glasses that feature a universal density of states. In particular, we show that in a frequency range in which this number is small, $Gamma(k)$ follows a Rayleigh scattering scaling $sim!k^{d+1}$ ($d$ is the spatial dimension), and that in a frequency range in which this number is sufficiently large, the recently observed generalized-Rayleigh scaling of the form $sim!k^{d+1}log!{(k_0/k)}$ emerges ($k_0!>k_dagger$ is a characteristic wavenumber). Our results suggest that macroscopic glasses --- and, in particular, glasses generated by conventional laboratory quenches that are known to strongly suppress quasilocalized nonphononic excitations --- exhibit Rayleigh scaling at the lowest wavenumbers $k$ and a crossover to generalized-Rayleigh scaling at higher $k$. Some supporting experimental evidence from recent literature is presented.
The temperature dependence of the thermal conductivity of amorphous solids is markedly different from that of their crystalline counterparts, but exhibits universal behaviour. Sound attenuation is believed to be related to this universal behaviour. R
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of V. Savona to describe Rayleigh s
We experimentally analyze Rayleigh scattering in coupled planar microcavities. We show that the correlations of the disorder in the two cavities lead to inter-branch scattering of polaritons, that would otherwise be forbidden by symmetry. These longi
Iglesias et al. (2002) showed that the Rayleigh scattering from helium atoms decreases by collective effects in the atmospheres of cool white dwarf stars. Their study is here extended to consider an accurate evaluation of the atomic polarizability an
We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free surface of a homogeneous substrate. We describe, analytically and