ﻻ يوجد ملخص باللغة العربية
An indirect exciton is a bound state of an electron and a hole in spatially separated layers. Two-dimensional indirect excitons can be created optically in heterostructures containing double quantum wells or atomically thin semiconductors. We study theoretically transmission of such bosonic quasiparticles through nano-constrictions. We show that quantum transport phenomena, e.g., conductance quantization, single-slit diffraction, two-slit interference, and the Talbot effect, are experimentally realizable in systems of indirect excitons. We discuss similarities and differences between these phenomena and their counterparts in electronic devices.
We present measurements on side gated graphene constrictions of different geometries. We characterize the transport gap by its width in back gate voltage and compare this to an analysis based on Coulomb blockade measurements of localized states. We s
We investigate the propagation of spin impurity atoms through a strongly interacting one-dimensional Bose gas. The initially well localized impurities are accelerated by a constant force, very much analogous to electrons subject to a bias voltage, an
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scatterin
We experimentally demonstrate hot exciton transport in h-BN encapsulated WSe2 monolayers via spatially and temporally resolved photoluminescence measurements at room temperature. We show that the nonlinear evolution of the mean squared displacement o
We report on DC and microwave electrical transport measurements in silicon-on-insulator CMOS nano-transistors at low and room temperature. At low source-drain voltage, the DC current and RF response show signs of conductance quantization. We attribut