ﻻ يوجد ملخص باللغة العربية
The material point method (MPM) has been increasingly used for the simulation of large deformation processes in fluid-infiltrated porous materials. For undrained poromechanical problems, however, standard MPMs are numerically unstable because they use low-order interpolation functions that violate the inf-sup stability condition. In this work, we develop stabilized MPM formulations for dynamic and quasi-static poromechanics that permit the use of standard low-order interpolation functions notwithstanding the drainage condition. For the stabilization of both dynamic and quasi-static formulations, we utilize the polynomial pressure projection method whereby a stabilization term is augmented to the balance of mass. The stabilization term can be implemented with both the original and generalized interpolation material point (GIMP) methods, and it is compatible with existing time-integration methods. Here we use fully-implicit methods for both dynamic and quasi-static poromechanical problems, aided by a block-preconditioned Newton-Krylov solver. The stabilized MPMs are verified and investigated through several numerical examples under dynamic and quasi-static conditions. Results show that the proposed MPM formulations allow standard low-order interpolation functions to be used for both the solid displacement and pore pressure fields of poromechanical formulations, from undrained to drained conditions, and from dynamic to quasi-static conditions.
In this article, we present new random walk methods to solve flow and transport problems in unsaturated/saturated porous media, including coupled flow and transport processes in soils, heterogeneous systems modeled through random hydraulic conductivi
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite element
We study several iterative methods for fully coupled flow and reactive transport in porous media. The resulting mathematical model is a coupled, nonlinear evolution system. The flow model component builds on the Richards equation, modified to incorpo
We demonstrate the effective use of randomized methods for linear algebra to perform network-based analysis of complex vortical flows. Network theoretic approaches can reveal the connectivity structures among a set of vortical elements and analyze th
This work proposes a new stabilized $P_1times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressu