ﻻ يوجد ملخص باللغة العربية
We show that a black hole surrounded by scalar dark matter develops scalar hair. This is the generalization of a phenomenon pointed out by Jacobson, that a minimally coupled scalar with a non-trivial time dependence far away from the black hole would endow the black hole with hair. In our case, the time dependence arises from the oscillation of a scalar field with a non-zero mass. We systematically explore the scalar profile around the black hole for different scalar masses. In the small mass limit, the scalar field has a $1/r$ component at large radius $r$, consistent with Jacobsons result. In the large mass limit (with the Compton wavelength of order of the horizon or smaller), the scalar field has a $1/r^{3/4}$ profile yielding a pile-up close to the horizon, while distinctive nodes occur for intermediate masses. Thus, the dark matter profile around a black hole, while challenging to measure, contains information about the dark matter particle mass. As an application, we consider the case of the supermassive black hole at the center of M87, recently imaged by the Event Horizon Telescope. Its horizon size is roughly the Compton wavelength of a scalar particle of mass $10^{-20}$ eV. We consider the implications of the expected scalar pile-up close to the horizon, for fuzzy dark matter at a mass of $10^{-20}$ eV or below.
Scalar fields around compact objects are of interest for scalar-tensor theories of gravity and dark matter models consisting of a massive scalar, e.g. axions. We study the behaviour of a scalar field around a Kerr black hole with non trivial asymptot
Light bosonic scalars (e.g. axions) may form clouds around black holes via superradiant instabilities, or via accretion if they form some component of the dark matter. It has been suggested that their presence may lead to a distinctive dephasing of t
We revisit the physical effects of discrete $mathbb{Z}_p$ gauge charge on black hole thermodynamics, building on the seminal work of Coleman, Preskill, and Wilczek. Realising the discrete theory from the spontaneous breaking of an Abelian gauge theor
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metr
Searching for violations of the no-hair theorem (NHT) is a powerful way to test gravity, and more generally fundamental physics, particularly with regards to the existence of additional scalar fields. The first observation of a black hole (BH) shadow