ﻻ يوجد ملخص باللغة العربية
In this paper, we first prove the $f$-mean curvature comparison in a smooth metric measure space when the Bakry-Emery Ricci tensor is bounded from below and $|f|$ is bounded. Based on this, we define a Myers-type compactness theorem by generalizing the results of Cheeger, Gromov, and Taylor and of Wan for the Bakry-Emery Ricci tensor. Moreover, we improve a result from Soylu by using a weaker condition on a derivative $f(t)$.
For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.
We prove a parametrized compactness theorem on manifolds of bounded Ricci curvature, upper bounded diameter and lower bounded injectivity radius.
We prove a Bonnet-Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivat
The almost splitting theorem of Cheeger-Colding is established in the setting of almost nonnegative generalized $m$-Bakry-{E}mery Ricci curvature, in which $m$ is positive and the associated vector field is not necessarily required to be the gradient
In this paper we prove a compactness result for Ricci flows with bounded scalar curvature and entropy. It states that given any sequence of such Ricci flows, we can pass to a subsequence that converges to a metric space which is smooth away from a se