ﻻ يوجد ملخص باللغة العربية
Twin-field quantum key distribution (TF-QKD) and its variant protocols are highly attractive due to the advantage of overcoming the rate-loss limit for secret key rates of point-to-point QKD protocols. For variations of TF-QKD, the key point to ensure security is switching randomly between a code mode and a test mode. Among all TF-QKD protocols, their code modes are very different, e.g. modulating continuous phases, modulating only two opposite phases, and sending or not sending signal pulses. Here we show that, by discretizing the number of global phases in the code mode, we can give a unified view on the first two types of TF-QKD protocols, and demonstrate that increasing the number of discrete phases extends the achievable distance, and as a trade-off, lowers the secret key rate at short distances due to the phase post-selection.
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many var
Twin-Field Quantum Key Distribution(TF-QKD) protocol and its variants, such as Phase-Matching QKD(PM-QKD), sending or not QKD(SNS-QKD) and No Phase Post-Selection TF-QKD(NPP-TFQKD), are very promising for long-distance applications. However, there ar
Twin-field quantum key distribution (TF-QKD), which is immune to all possible detector side channel attacks, enables two remote legitimate users to perform secure communications without quantum repeaters. With the help of a central node, TF-QKD is ex
Twin-Field quantum key distribution (TF-QKD) and its variants, e.g. Phase-Matching QKD, Sending-or-not-sending QKD, and No Phase Post-Selection TFQKD promise high key rates at long distance to beat the rate distance limit without a repeater. The secu
Quantum mechanics allows the distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is the most promising technique for its implementation on long-distance fibers, but requires stabilizing the optic