ﻻ يوجد ملخص باللغة العربية
Recently, the state-of-the-art models for image captioning have overtaken human performance based on the most popular metrics, such as BLEU, METEOR, ROUGE, and CIDEr. Does this mean we have solved the task of image captioning? The above metrics only measure the similarity of the generated caption to the human annotations, which reflects its accuracy. However, an image contains many concepts and multiple levels of detail, and thus there is a variety of captions that express different concepts and details that might be interesting for different humans. Therefore only evaluating accuracy is not sufficient for measuring the performance of captioning models --- the diversity of the generated captions should also be considered. In this paper, we proposed a new metric for measuring the diversity of image captions, which is derived from latent semantic analysis and kernelized to use CIDEr similarity. We conduct extensive experiments to re-evaluate recent captioning models in the context of both diversity and accuracy. We find that there is still a large gap between the model and human performance in terms of both accuracy and diversity and the models that have optimized accuracy (CIDEr) have low diversity. We also show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the tradeoff between diversity and accuracy of the generated captions.
Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very c
We investigate the effect of different model architectures, training objectives, hyperparameter settings and decoding procedures on the diversity of automatically generated image captions. Our results show that 1) simple decoding by naive sampling, c
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of
Image captioning is a research hotspot where encoder-decoder models combining convolutional neural network (CNN) and long short-term memory (LSTM) achieve promising results. Despite significant progress, these models generate sentences differently fr
Automatic captioning of images is a task that combines the challenges of image analysis and text generation. One important aspect in captioning is the notion of attention: How to decide what to describe and in which order. Inspired by the successes i