ﻻ يوجد ملخص باللغة العربية
The ability to identify the static background in videos captured by a moving camera is an important pre-requisite for many video applications (e.g. video stabilization, stitching, and segmentation). Existing methods usually face difficulties when the foreground objects occupy a larger area than the background in the image. Many methods also cannot scale up to handle densely sampled feature trajectories. In this paper, we propose an efficient local-to-global method to identify background, based on the assumption that as long as there is sufficient camera motion, the cumulative background features will have the largest amount of trajectories. Our motion model at the two-frame level is based on the epipolar geometry so that there will be no over-segmentation problem, another issue that plagues the 2D motion segmentation approach. Foreground objects erroneously labelled due to intermittent motions are also taken care of by checking their global consistency with the final estimated background motion. Lastly, by virtue of its efficiency, our method can deal with densely sampled trajectories. It outperforms several state-of-the-art motion segmentation methods on public datasets, both quantitatively and qualitatively.
Self-supervised learning has shown great potentials in improving the video representation ability of deep neural networks by getting supervision from the data itself. However, some of the current methods tend to cheat from the background, i.e., the p
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video. We integrate a learning-based depth prior, in the form of a convolutional neural network trained for single-image depth estimation, with geome
Identifying underlying governing equations and physical relevant information from high-dimensional observable data has always been a challenge in physical sciences. With the recent advances in sensing technology and available datasets, various machin
Various blur distortions in video will cause negative impact on both human viewing and video-based applications, which makes motion-robust deblurring methods urgently needed. Most existing works have strong dataset dependency and limited generalizati
In this work, we address the problem of outlier detection for robust motion estimation by using modern sparse-low-rank decompositions, i.e., Robust PCA-like methods, to impose global rank constraints. Robust decompositions have shown to be good at sp