ﻻ يوجد ملخص باللغة العربية
Point of care ultrasound (POCUS) consists in the use of ultrasound imaging in critical or emergency situations to support clinical decisions by healthcare professionals and first responders. In this setting it is essential to be able to provide means to obtain diagnostic data to potentially inexperienced users who did not receive an extensive medical training. Interpretation and acquisition of ultrasound images is not trivial. First, the user needs to find a suitable sound window which can be used to get a clear image, and then he needs to correctly interpret it to perform a diagnosis. Although many recent approaches focus on developing smart ultrasound devices that add interpretation capabilities to existing systems, our goal in this paper is to present a reinforcement learning (RL) strategy which is capable to guide novice users to the correct sonic window and enable them to obtain clinically relevant pictures of the anatomy of interest. We apply our approach to cardiac images acquired from the parasternal long axis (PLAx) view of the left ventricle of the heart.
Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasnt received a lot of attention in the medical image analysis community. In the clinical practice, it is chall
This paper presents a new deep-learning based method to simultaneously calibrate the intrinsic parameters of fisheye lens and rectify the distorted images. Assuming that the distorted lines generated by fisheye projection should be straight after rec
To eliminate the problems of large dimensional differences, big semantic gap, and mutual interference caused by hybrid features, in this paper, we propose a novel Multi-Features Guidance Network for partial-to-partial point cloud registration(MFG). T
Question answering is an important task for autonomous agents and virtual assistants alike and was shown to support the disabled in efficiently navigating an overwhelming environment. Many existing methods focus on observation-based questions, ignori
We present the first system that provides real-time probe movement guidance for acquiring standard planes in routine freehand obstetric ultrasound scanning. Such a system can contribute to the worldwide deployment of obstetric ultrasound scanning by