ﻻ يوجد ملخص باللغة العربية
We present the analysis of infrared (IR) observations of the planetary nebula NGC 40 together with spectral analysis of its [WC]-type central star HD 826. Spitzer IRS observations were used to produce spectral maps centred at polycyclic aromatic hydrocarbons (PAH) bands and ionic transitions to compare their spatial distribution. The ionic lines show a clumpy distribution of material around the main cavity of NGC 40, with the emission from [Ar II] being the most extended, whilst the PAHs show a rather smooth spatial distribution. Analysis of ratio maps shows the presence of a toroidal structure mainly seen in PAH emission, but also detected in a Herschel PACS 70 mic image. We argue that the toroidal structure absorbs the UV flux from HD 826, preventing the nebula to exhibit lines of high-excitation levels as suggested by previous authors. We discuss the origin of this structure and the results from the spectral analysis of HD 826 under the scenario of a late thermal pulse.
The detection and study of molecular gas in born-again stars would be of great importance to understand their composition and chemical evolution. In addition, the molecular emission would be an invaluable tool to explore the physical conditions, kine
We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate t
We report the discovery of a handful of optical hydrogen-poor knots in the central part of an extended infrared nebula centred on the [WO1] star WR 72, obtained by spectroscopic and imaging observations with the Southern African Large Telescope (SALT
HuBi 1 has been proposed to be member of the rare class of born-again planetary nebulae (PNe), i.e., its central star experienced a very late thermal pulse and ejected highly-processed material at high speeds inside the old hydrogen-rich PN. In this
The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place in timescales of years. In addition, the projected full digitalization of the Ha