ﻻ يوجد ملخص باللغة العربية
We study the learnability of a class of compact operators known as Schatten--von Neumann operators. These operators between infinite-dimensional function spaces play a central role in a variety of applications in learning theory and inverse problems. We address the question of sample complexity of learning Schatten-von Neumann operators and provide an upper bound on the number of measurements required for the empirical risk minimizer to generalize with arbitrary precision and probability, as a function of class parameter $p$. Our results give generalization guarantees for regression of infinite-dimensional signals from infinite-dimensional data. Next, we adapt the representer theorem of Abernethy emph{et al.} to show that empirical risk minimization over an a priori infinite-dimensional, non-compact set, can be converted to a convex finite dimensional optimization problem over a compact set. In summary, the class of $p$-Schatten--von Neumann operators is probably approximately correct (PAC)-learnable via a practical convex program for any $p < infty$.
We study differential operators on complete Riemannian manifolds which act on sections of a bundle of finite type modules over a von Neumann algebra with a trace. We prove a relative index and a Callias-type index theorems for von Neumann indexes of
The similarity of feature representations plays a pivotal role in the success of domain adaptation and generalization. Feature similarity includes both the invariance of marginal distributions and the closeness of conditional distributions given the
We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms (overlapped and latent) for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured s
The Kubo-Ando theory deals with connections for positive bounded operators. On the other hand, in various analysis related to von Neumann algebras it is impossible to avoid unbounded operators. In this article we try to extend a notion of connections
The properties of quantum probabilities are linked to the geometry of quantum mechanics, described by the Birkhoff-von Neumann lattice. Quantum probabilities violate the additivity property of Kolmogorov probabilities, and they are interpreted as Dem