We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons in multiple frequency channels. Inspired by harmonic retrieval in signal processing, we develop a simple yet efficient two-stage algorithm that leverages the multi-frequency information. We demonstrate in theory and practice that the proposed algorithm significantly outperforms state-of-the-art phase synchronization algorithms, at a mild computational costs incurred by using the extra frequency channels. We also extend our algorithmic framework to general synchronization problems over compact Lie groups.