ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals

382   0   0.0 ( 0 )
 نشر من قبل Biye Xie
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The studies of topological phases of matter have been extended from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators (HOTIs) have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of HOTIs have been mainly focused on the topological multipole systems with negative coupling between lattice sites. Here we experimentally demonstrate that second-order topological insulating phases without negative coupling can be realized in two-dimensional dielectric photonic crystals (PCs). We visualize both one-dimensional topological edge states and zero-dimensional topological corner states by using near-field scanning technique. To characterize the topological properties of PCs, we define a novel topological invariant based on the bulk polarizations. Our findings open new research frontiers for searching HOTIs in dielectric PCs and provide a new mechanism for light-manipulating in a hierarchical way.



قيم البحث

اقرأ أيضاً

We demonstrate that multiple higher-order topological transitions can be triggered via the continuous change of the geometry in kagome photonic crystals composed of three dielectric rods. By tuning a single geometry parameter, the photonic corner and edge states emerge or disappear with the higher-order topological transitions. Two distinct higher-order topological insulator phases and a normal insulator phase are revealed. Their topological indices are obtained from symmetry representations. A photonic analog of fractional corner charge is introduced to distinguish the two higher-order topological insulator phases. Our predictions can be readily realized and verified in configurable dielectric photonic crystals.
Macroscopic two-dimensional sonic crystals with inversion symmetry are studied to reveal higher-order topological physics in classical wave systems. By tuning a single geometry parameter, the band topology of the bulk and the edges can be controlled simultaneously. The bulk band gap forms an acoustic analog of topological crystalline insulators with edge states which are gapped due to symmetry reduction on the edges. In the presence of mirror symmetry, the band topology of the edge states can be characterized by the Zak phase, illustrating the band topology in a hierarchy of dimensions, which is at the heart of higher-order topology. Moreover, the edge band gap can be closed without closing the bulk band gap, revealing an independent topological transition on the edges. The rich topological transitions in both bulk and edges can be well-described by the symmetry eigenvalues at the high-symmetry points in the bulk and surface Brillouin zones. We further analyze the higher-order topology in the shrunken sonic crystals where slightly different physics but richer corner and edge phenomena are revealed. In these systems, the rich, multidimensional topological transitions can be exploited for topological transfer among zero-, one- and two- dimensional acoustic modes by controlling the geometry.
We show theoretically that, in the limit of weak dispersion, one-dimensional (1D) binary centrosymmetric photonic crystals can support topological edge modes in all photonic band gaps. By analyzing their bulk band topology, these harmonic topological edge modes can be designed in a way that they exist at all photonic band gaps opened at the center of the Brillouin Zone, or at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-frequency coupled modes for applications in nonlinear photonics, such as frequency up-conversion.
The notion of higher-order topological insulators has endowed materials with topological states beyond the first order. Particularly, a three-dimensional (3D) higher-order topological insulator can host topologically protected 1D hinge states, referr ed to as the second-order topological insulator, or 0D corner states, referred to as the third-order topological insulator. Similarly, a 3D higher-order topological semimetal can be envisaged if it hosts states on the 1D hinges. Here we report the realization of a second-order topological Weyl semimetal in a 3D-printed acoustic crystal, which possesses Weyl points in 3D momentum space, 2D Fermi arc states on surfaces and 1D gapless states on hinges. Like the arc surface states, the hinge states also connect the projections of the Weyl points. Our experimental results evidence the existence of the higher-order topological semimetal, which may pave the way towards innovative acoustic devices.
Topological photonic systems represent a new class of optical materials supporting boundary modes with unique properties, not found in conventional photonics. While the early research on topological photonics has focused on edge and surface modes in 2D and 3D systems, respectively, recently higher-order topological insulators (HOTIs) supporting lower-dimensional boundary states have been introduced. In this work we design and experimentally realize a photonic kagome metasurface exhibiting a Wannier-type higher-order topological phase. We demonstrate and visualize the emergence of a topological transition and opening of a Dirac cone by directly exciting the bulk modes of the HOTI metasurface via solid-state immersion spectroscopy. The open nature of the metasurface is then utilized to directly image topological boundary states. We show that, while the domain walls host 1D edge states, their bending induces 0D higher-order topological modes confined to the corners. The demonstrated metasurface hosting topological boundary modes of different dimensionality paves the way to a new generation of universal and resilient optical devices which can controllably scatter, trap and guide optical fields in a robust way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا