ﻻ يوجد ملخص باللغة العربية
Exploration of new superconductors still relies on the experience and intuition of experts and is largely a process of experimental trial and error. In one study, only 3% of the candidate materials showed superconductivity. Here, we report the first deep learning model for finding new superconductors. We introduced the method named reading periodic table which represented the periodic table in a way that allows deep learning to learn to read the periodic table and to learn the law of elements for the purpose of discovering novel superconductors that are outside the training data. It is recognized that it is difficult for deep learning to predict something outside the training data. Although we used only the chemical composition of materials as information, we obtained an $R^{2}$ value of 0.92 for predicting $T_text{c}$ for materials in a database of superconductors. We also introduced the method named garbage-in to create synthetic data of non-superconductors that do not exist. Non-superconductors are not reported, but the data must be required for deep learning to distinguish between superconductors and non-superconductors. We obtained three remarkable results. The deep learning can predict superconductivity for a material with a precision of 62%, which shows the usefulness of the model; it found the recently discovered superconductor CaBi2 and another one Hf0.5Nb0.2V2Zr0.3, neither of which is in the superconductor database; and it found Fe-based high-temperature superconductors (discovered in 2008) from the training data before 2008. These results open the way for the discovery of new high-temperature superconductor families. The candidate materials list, data, and method are openly available from the link https://github.com/tomo835g/Deep-Learning-to-find-Superconductors.
We introduce novel communication strategies in synchronous distributed Deep Learning consisting of decentralized gradient reduction orchestration and computational graph-aware grouping of gradient tensors. These new techniques produce an optimal over
Superconductivity results from a Bose condensate of Cooper-paired electrons with a macroscopic quantum wavefunction. Dramatic effects can occur when the region of the condensate is shaped and confined to the nanometer scale. Recent progress in nanost
The Nernst effect is the transverse electric field produced by a longitudinal thermal gradient in presence of magnetic field. In the beginning of this century, Nernst experiments on cuprates were analyzed assuming that: i) The contribution of quasi-p
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behavi
Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect o