ﻻ يوجد ملخص باللغة العربية
Detecting semantic parts of an object is a challenging task in computer vision, particularly because it is hard to construct large annotated datasets due to the difficulty of annotating semantic parts. In this paper we present an approach which learns from a small training dataset of annotated semantic parts, where the object is seen from a limited range of viewpoints, but generalizes to detect semantic parts from a much larger range of viewpoints. Our approach is based on a matching algorithm for finding accurate spatial correspondence between two images, which enables semantic parts annotated on one image to be transplanted to another. In particular, this enables images in the training dataset to be matched to a virtual 3D model of the object (for simplicity, we assume that the object viewpoint can be estimated by standard techniques). Then a clustering algorithm is used to annotate the semantic parts of the 3D virtual model. This virtual 3D model can be used to synthesize annotated images from a large range of viewpoint. These can be matched to images in the test set, using the same matching algorithm, to detect semantic parts in novel viewpoints of the object. Our algorithm is very simple, intuitive, and contains very few parameters. We evaluate our approach in the car subclass of the VehicleSemanticPart dataset. We show it outperforms standard deep network approaches and, in particular, performs much better on novel viewpoints. For facilitating the future research, code is available: https://github.com/ytongbai/SemanticPartDetection
We present our approach for robotic perception in cluttered scenes that led to winning the recent Amazon Robotics Challenge (ARC) 2017. Next to small objects with shiny and transparent surfaces, the biggest challenge of the 2017 competition was the i
We propose a new iterative segmentation model which can be accurately learned from a small dataset. A common approach is to train a model to directly segment an image, requiring a large collection of manually annotated images to capture the anatomica
Caricature is an artistic drawing created to abstract or exaggerate facial features of a person. Rendering visually pleasing caricatures is a difficult task that requires professional skills, and thus it is of great interest to design a method to aut
We propose a novel framework for the analysis of learning algorithms that allows us to say when such algorithms can and cannot generalize certain patterns from training data to test data. In particular we focus on situations where the rule that must
Correctly detecting the semantic type of data columns is crucial for data science tasks such as automated data cleaning, schema matching, and data discovery. Existing data preparation and analysis systems rely on dictionary lookups and regular expres