ترغب بنشر مسار تعليمي؟ اضغط هنا

Audio-Based Activities of Daily Living (ADL) Recognition with Large-Scale Acoustic Embeddings from Online Videos

82   0   0.0 ( 0 )
 نشر من قبل Dawei Liang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the years, activity sensing and recognition has been shown to play a key enabling role in a wide range of applications, from sustainability and human-computer interaction to health care. While many recognition tasks have traditionally employed inertial sensors, acoustic-based methods offer the benefit of capturing rich contextual information, which can be useful when discriminating complex activities. Given the emergence of deep learning techniques and leveraging new, large-scaled multi-media datasets, this paper revisits the opportunity of training audio-based classifiers without the onerous and time-consuming task of annotating audio data. We propose a framework for audio-based activity recognition that makes use of millions of embedding features from public online video sound clips. Based on the combination of oversampling and deep learning approaches, our framework does not require further feature processing or outliers filtering as in prior work. We evaluated our approach in the context of Activities of Daily Living (ADL) by recognizing 15 everyday activities with 14 participants in their own homes, achieving 64.2% and 83.6% averaged within-subject accuracy in terms of top-1 and top-3 classification respectively. Individual class performance was also examined in the paper to further study the co-occurrence characteristics of the activities and the robustness of the framework.



قيم البحث

اقرأ أيضاً

246 - Srijan Das , Rui Dai , Di Yang 2021
Many attempts have been made towards combining RGB and 3D poses for the recognition of Activities of Daily Living (ADL). ADL may look very similar and often necessitate to model fine-grained details to distinguish them. Because the recent 3D ConvNets are too rigid to capture the subtle visual patterns across an action, this research direction is dominated by methods combining RGB and 3D Poses. But the cost of computing 3D poses from RGB stream is high in the absence of appropriate sensors. This limits the usage of aforementioned approaches in real-world applications requiring low latency. Then, how to best take advantage of 3D Poses for recognizing ADL? To this end, we propose an extension of a pose driven attention mechanism: Video-Pose Network (VPN), exploring two distinct directions. One is to transfer the Pose knowledge into RGB through a feature-level distillation and the other towards mimicking pose driven attention through an attention-level distillation. Finally, these two approaches are integrated into a single model, we call VPN++. We show that VPN++ is not only effective but also provides a high speed up and high resilience to noisy Poses. VPN++, with or without 3D Poses, outperforms the representative baselines on 4 public datasets. Code is available at https://github.com/srijandas07/vpnplusplus.
We present a novel dataset and a novel algorithm for recognizing activities of daily living (ADL) from a first-person wearable camera. Handled objects are crucially important for egocentric ADL recognition. For specific examination of objects related to users actions separately from other objects in an environment, many previous works have addressed the detection of handled objects in images captured from head-mounted and chest-mounted cameras. Nevertheless, detecting handled objects is not always easy because they tend to appear small in images. They can be occluded by a users body. As described herein, we mount a camera on a users wrist. A wrist-mounted camera can capture handled objects at a large scale, and thus it enables us to skip object detection process. To compare a wrist-mounted camera and a head-mounted camera, we also develop a novel and publicly available dataset that includes videos and annotations of daily activities captured simultaneously by both cameras. Additionally, we propose a discriminative video representation that retains spatial and temporal information after encoding frame descriptors extracted by Convolutional Neural Networks (CNN).
Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word (acoustic-to-word) speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.
We present the design, implementation, and evaluation of a multi-sensor low-power necklace NeckSense for automatically and unobtrusively capturing fine-grained information about an individuals eating activity and eating episodes, across an entire wak ing-day in a naturalistic setting. The NeckSense fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested NeckSense with 11 obese and 9 non-obese participants across two studies, where we collected more than 470 hours of data in naturalistic setting. Our result demonstrates that NeckSense enables reliable eating-detection for an entire waking-day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve a F1-score of 77.1% for episodes even in an all-day-around free-living setting. With more than 15.8 hours of battery-life NeckSense will allow researchers and dietitians to better understand natural chewing and eating behaviors, and also enable real-time interventions.
Multilingual end-to-end (E2E) models have shown great promise in expansion of automatic speech recognition (ASR) coverage of the worlds languages. They have shown improvement over monolingual systems, and have simplified training and serving by elimi nating language-specific acoustic, pronunciation, and language models. This work presents an E2E multilingual system which is equipped to operate in low-latency interactive applications, as well as handle a key challenge of real world data: the imbalance in training data across languages. Using nine Indic languages, we compare a variety of techniques, and find that a combination of conditioning on a language vector and training language-specific adapter layers produces the best model. The resulting E2E multilingual model achieves a lower word error rate (WER) than both monolingual E2E models (eight of nine languages) and monolingual conventional systems (all nine languages).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا