ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning

198   0   0.0 ( 0 )
 نشر من قبل Yuan Gao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yuan Gao




اسأل ChatGPT حول البحث

Deep reinforcement learning has recently been widely applied in robotics to study tasks such as locomotion and grasping, but its application to social human-robot interaction (HRI) remains a challenge. In this paper, we present a deep learning scheme that acquires a prior model of robot approaching behavior in simulation and applies it to real-world interaction with a physical robot approaching groups of humans. The scheme, which we refer to as Staged Social Behavior Learning (SSBL), considers different stages of learning in social scenarios. We learn robot approaching behaviors towards small groups in simulation and evaluate the performance of the model using objective and subjective measures in a perceptual study and a HRI user study with human participants. Results show that our model generates more socially appropriate behavior compared to a state-of-the-art model.



قيم البحث

اقرأ أيضاً

Safe and efficient navigation through human crowds is an essential capability for mobile robots. Previous work on robot crowd navigation assumes that the dynamics of all agents are known and well-defined. In addition, the performance of previous meth ods deteriorates in partially observable environments and environments with dense crowds. To tackle these problems, we propose decentralized structural-Recurrent Neural Network (DS-RNN), a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation. We train our network with model-free deep reinforcement learning without any expert supervision. We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios. We successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i.
Knowledge of interaction forces during teleoperated robot-assisted surgery could be used to enable force feedback to human operators and evaluate tissue handling skill. However, direct force sensing at the end-effector is challenging because it requi res biocompatible, sterilizable, and cost-effective sensors. Vision-based deep learning using convolutional neural networks is a promising approach for providing useful force estimates, though questions remain about generalization to new scenarios and real-time inference. We present a force estimation neural network that uses RGB images and robot state as inputs. Using a self-collected dataset, we compared the network to variants that included only a single input type, and evaluated how they generalized to new viewpoints, workspace positions, materials, and tools. We found that vision-based networks were sensitive to shifts in viewpoints, while state-only networks were robust to changes in workspace. The network with both state and vision inputs had the highest accuracy for an unseen tool, and was moderately robust to changes in viewpoints. Through feature removal studies, we found that using only position features produced better accuracy than using only force features as input. The network with both state and vision inputs outperformed a physics-based baseline model in accuracy. It showed comparable accuracy but faster computation times than a baseline recurrent neural network, making it better suited for real-time applications.
This paper proposes an end-to-end deep reinforcement learning approach for mobile robot navigation with dynamic obstacles avoidance. Using experience collected in a simulation environment, a convolutional neural network (CNN) is trained to predict pr oper steering actions of a robot from its egocentric local occupancy maps, which accommodate various sensors and fusion algorithms. The trained neural network is then transferred and executed on a real-world mobile robot to guide its local path planning. The new approach is evaluated both qualitatively and quantitatively in simulation and real-world robot experiments. The results show that the map-based end-to-end navigation model is easy to be deployed to a robotic platform, robust to sensor noise and outperforms other existing DRL-based models in many indicators.
For robots to coexist with humans in a social world like ours, it is crucial that they possess human-like social interaction skills. Programming a robot to possess such skills is a challenging task. In this paper, we propose a Multimodal Deep Q-Netwo rk (MDQN) to enable a robot to learn human-like interaction skills through a trial and error method. This paper aims to develop a robot that gathers data during its interaction with a human and learns human interaction behaviour from the high-dimensional sensory information using end-to-end reinforcement learning. This paper demonstrates that the robot was able to learn basic interaction skills successfully, after 14 days of interacting with people.
We present a novel method for safely navigating a robot in unknown and uneven outdoor terrains. Our approach trains a novel Deep Reinforcement Learning (DRL)-based network with channel and spatial attention modules using a novel reward function to co mpute an attention map of the environment. The attention map identifies regions in the environments elevation map with high elevation gradients where the robot could have reduced stability or even flip over. We transform this attention map into a 2D navigation cost-map, which encodes the planarity (level of flatness) of the terrain. Using the cost-map, we formulate a novel method for computing local least-cost waypoints leading to the robots goal and integrate our approach with DWA-RL, a state-of-the-art navigation method. Our approach guarantees safe, locally least-cost paths and dynamically feasible robot velocities in highly uneven terrains. Our hybrid approach also leads to a low sim-to-real gap, which arises while training DRL networks. We observe an improvement in terms of success rate, the cumulative elevation gradient of the robots trajectory, and the safety of the robots velocity. We evaluate our method on a real Husky robot in highly uneven real-world terrains and demonstrate its benefits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا