ﻻ يوجد ملخص باللغة العربية
Data collection and annotation are time-consuming in machine learning, expecially for large scale problem. A common approach for this problem is to transfer knowledge from a related labeled domain to a target one. There are two popular ways to achieve this goal: adversarial learning and self training. In this article, we first analyze the training unstablity problem and the mistaken confusion issue in adversarial learning process. Then, inspired by domain confusion and self-ensembling methods, we propose a combined model to learn feature and class jointly invariant representation, namely Domain Confusion with Self Ensembling (DCSE). The experiments verified that our proposed approach can offer better performance than empirical art in a variety of unsupervised domain adaptation benchmarks.
Recently, in order to address the unsupervised domain adaptation (UDA) problem, extensive studies have been proposed to achieve transferrable models. Among them, the most prevalent method is adversarial domain adaptation, which can shorten the distan
Recent advances in deep learning methods have come to define the state-of-the-art for many medical imaging applications, surpassing even human judgment in several tasks. Those models, however, when trained to reduce the empirical risk on a single dom
There are a variety of Domain Adaptation (DA) scenarios subject to label sets and domain configurations, including closed-set and partial-set DA, as well as multi-source and multi-target DA. It is notable that existing DA methods are generally design
Insightful findings in political science often require researchers to analyze documents of a certain subject or type, yet these documents are usually contained in large corpora that do not distinguish between pertinent and non-pertinent documents. In
Unsupervised domain adaptation (UDA) aims to transfer the knowledge on a labeled source domain distribution to perform well on an unlabeled target domain. Recently, the deep self-training involves an iterative process of predicting on the target doma