ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of baryonic and dark matter substructure on the Pal 5 stream

57   0   0.0 ( 0 )
 نشر من قبل Nilanjan Banik
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational encounters between small-scale dark matter substructure and cold stellar streams in the Milky Way halo lead to density perturbations in the latter, making streams an effective probe for detecting dark matter substructure. The Pal 5 stream is one such system for which we have some of the best data. However, Pal 5 orbits close to the center of the Milky Way and has passed through the Galactic disk many times, where its structure can be perturbed by baryonic structures such as the Galactic bar and giant molecular clouds (GMCs). In order to understand how these baryonic structures affect Pal 5s density, we present a detailed study of the effects of the Galactic bar, spiral structure, GMCs, and globular clusters on the Pal 5 stream. We estimate the effect of each perturber on the stream density by computing its power spectrum and comparing it to the power induced by a CDM-like population of dark matter subhalos. We find that the bar and GMCs can each individually create power that is comparable to the observed power on large scales, leaving little room for dark matter substructure, while spirals are subdominant on all scales. On degree scales, the power induced by the bar is small, but GMCs create small-scale density variations that are similar in amplitude to the dark-matter induced variations but otherwise indistinguishable from it. These results demonstrate that Pal 5 is a poor system for constraining the dark matter substructure fraction and that observing streams further out in the halo will be necessary to confidently detect dark matter subhalos.



قيم البحث

اقرأ أيضاً

We study the properties of the dark matter component of the radially anisotropic stellar population recently identified in the Gaia data, using magneto-hydrodynamical simulations of Milky Way-like halos from the Auriga project. We identify 10 simulat ed galaxies that approximately match the rotation curve and stellar mass of the Milky Way. Four of these have an anisotropic stellar population reminiscent of the Gaia structure. We find an anti-correlation between the dark matter mass fraction of this population in the Solar neighbourhood and its orbital anisotropy. We estimate the local dark matter density and velocity distribution for halos with and without the anisotropic stellar population, and use them to simulate the signals expected in future xenon and germanium direct detection experiments. We find that a generalized Maxwellian distribution fits the dark matter halo integrals of the Milky Way-like halos containing the radially anisotropic stellar population. For dark matter particle masses below approximately 10 GeV, direct detection exclusion limits for the simulated halos with the anisotropic stellar population show a mild shift towards smaller masses compared to the commonly adopted Standard Halo Model.
260 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
The large-scale clustering of matter is impacted by baryonic physics, particularly AGN feedback. Modelling or mitigating this impact will be essential for making full use of upcoming measurements of cosmic shear and other large-scale structure probes . We study baryonic effects on the matter bispectrum, using measurements from a selection of state-of-the-art hydrodynamical simulations: IllustrisTNG, Illustris, EAGLE, and BAHAMAS. We identify a low-redshift enhancement of the bispectrum, peaking at $ksim 3h,{rm Mpc}^{-1}$, that is present in several simulations, and discuss how it can be associated to the evolving nature of AGN feedback at late times. This enhancement does not appear in the matter power spectrum, and therefore represents a new source of degeneracy breaking between two- and three-point statistics. In addition, we provide physical interpretations for other aspects of these measurements, and make initial comparisons to predictions from perturbation theory, empirical fitting formulas, and the response function formalism. We publicly release our measurements (including estimates of their uncertainty due to sample variance) and bispectrum measurement code as resources for the community.
Several recent studies have indicated that artificial subhalo disruption (the spontaneous, non-physical disintegration of a subhalo) remains prevalent in state-of-the-art dark matter-only cosmological simulations. In order to quantify the impact of d isruption on the inferred subhalo demographics, we augment the semi-analytical SatGen dynamical subhalo evolution model with an improved treatment of tidal stripping that is calibrated using the DASH database of idealized high-resolution simulations of subhalo evolution, which are free from artificial disruption. We also develop a model of artificial disruption that reproduces the statistical properties of disruption in the Bolshoi simulation. Using this framework, we predict subhalo mass functions (SHMFs), number density profiles, and substructure mass fractions and study how these quantities are impacted by artificial disruption and mass resolution limits. We find that artificial disruption affects these quantities at the $10-20%$ level, ameliorating previous concerns that it may suppress the SHMF by as much as a factor of two. We demonstrate that semi-analytical substructure modeling must include orbit integration in order to properly account for splashback haloes, which make up roughly half of the subhalo population. We show that the resolution limit of $N$-body simulations, rather than artificial disruption, is the primary cause of the radial bias in subhalo number density found in dark matter-only simulations. Hence, we conclude that the mass resolution remains the primary limitation of using such simulations to study subhaloes. Our model provides a fast, flexible, and accurate alternative to studying substructure statistics in the absence of both numerical resolution limits and artificial disruption.
140 - T. K. Chan 2015
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for $M_{ast}sim10^{4-11},M_{odot}$ galaxies in $M_{rm h}sim10^{9-12},M_{odot}$ halos. FIRE incorporates explic it stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without fine-tuned parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile ($alpha$) shows a strong mass dependence: profiles are shallow at $M_{rm h}sim10^{10}-10^{11},M_{odot}$ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of $alpha$, and relatively late growth of cores. Because the star formation efficiency $M_{ast}/M_{rm h}$ is strongly halo mass dependent, a rapid change in $alpha$ occurs around $M_{rm h}sim 10^{10},M_{odot}$ ($M_{ast}sim10^{6}-10^{7},M_{odot}$), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the Too Big To Fail problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا