ﻻ يوجد ملخص باللغة العربية
The optimal stochastic control problem with a quadratic cost functional for linear partial differential equations (PDEs) driven by a state-and control-dependent white noise is formulated and studied. Both finite-and infinite-time horizons are considered. The multi-plicative white noise dynamics of the system give rise to a new phenomenon of singularity to the associated Riccati equation and even to the Lyapunov equation. Well-posedness of both Riccati equation and Lyapunov equation are obtained for the first time. The linear feedback coefficient of the optimal control turns out to be singular and expressed in terms of the solution of the associated Riccati equation. The null controllability is shown to be equivalent to the existence of the solution to Riccati equation with the singular terminal value. Finally, the controlled Anderson model is addressed as an illustrating example.
The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for H2 and Hinf control problems. Depending on t
We establish existence and uniqueness for infinite dimensional Riccati equations taking values in the Banach space L 1 ($mu$ $otimes$ $mu$) for certain signed matrix measures $mu$ which are not necessarily finite. Such equations can be seen as the in
In this paper we study the optimal stochastic control problem for a path-dependent stochastic system under a recursive path-dependent cost functional, whose associated Bellman equation from dynamic programming principle is a path-dependent fully nonl
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, wit
This paper is concerned with a stochastic linear-quadratic (LQ) optimal control problem on infinite time horizon, with regime switching, random coefficients, and cone control constraint. Two new extended stochastic Riccati equations (ESREs) on infini