ﻻ يوجد ملخص باللغة العربية
The Heliospheric Imagers (HI) on board the two spacecraft of the Solar Terrestrial Relations Observatory (STEREO) provided white-light images of transients in the solar wind from dual perspectives from 2007 to 2014. In this paper, we develop a new method to identify and locate the transients automatically from simultaneous images from the two inner telescopes, known as HI-1, based on a correlation analysis. Correlation coefficient (cc) maps along the Sun-Earth line are constructed for the period from 1 Jan 2010 to 28 Feb 2011. From the maps, transients propagating along the Sun-Earth line are identified, and a 27-day periodic pattern is revealed, especially for small-scale transients. Such a periodicity in the transient pattern is consistent with the rotation of the Suns global magnetic structure and the periodic crossing of the streamer structures and slow solar wind across the Sun-Earth line, and this substantiates the reliability of our method and the high degree of association between the small-scale transients of the slow solar wind and the coronal streamers. Besides, it is suggested by the cc map that small-scale transients along the Sun-Earth line are more frequent than large-scale transients by a factor of at least 2, and that they quickly diffused into background solar wind within about 40 Rs in terms of the signal-to-noise ratio of white-light emissions. The method provides a new tool to reconstruct inhomogeneous structures in the heliosphere from multiple perspectives.
White-light images from Heliospheric Imager-1 (HI1) onboard the Solar Terrestrial Relations Observatory (STEREO) provide 2-dimensional (2D) global views of solar wind transients traveling in the inner heliosphere from two perspectives. How to retriev
Solar flare accelerated electron beams propagating away from the Sun can interact with the turbulent interplanetary media, producing plasma waves and type III radio emission. These electron beams are detected near the Earth with a double power-law en
Bubbles, the semi-circular voids below quiescent prominences (filaments), have been extensively investigated in the past decade. However, hitherto the magnetic nature of bubbles cannot be verified due to the lack of on-disk photospheric magnetic fiel
Fast (>700 km/s) and slow (~400 km/s) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknow
Observations at 1 au have confirmed that enhancements in measured energetic particle fluxes are statistically associated with rough magnetic fields, i.e., fields having atypically large spatial derivatives or increments, as measured by the Partial Va