ترغب بنشر مسار تعليمي؟ اضغط هنا

A plethora of new R Coronae Borealis stars discovered from a dedicated spectroscopic follow-up survey

99   0   0.0 ( 0 )
 نشر من قبل Patrick Tisserand Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is increasingly suspected that the rare R Coronae Borealis (RCB) stars - hydrogen-deficient and carbon-rich supergiant stars - are the products of mergers of CO/He white-dwarf binary systems in the intermediate mass regime ($0.6<M_{Tot}<1.2 M_{odot}$). Only 77 RCB stars are currently known in our Galaxy while up to 1000 were expected. It is necessary to find more of these peculiar and diverse stars to understand their origin and evolutionary path. We are undertaking such a dedicated search. We plan to follow up spectroscopically 2356 targets of interest that were carefully selected using the all sky 2MASS and WISE surveys. We have observed nearly 500 of these targets using optical low-resolution spectrographs. These spectra were compared to synthetic spectra from a new grid of MARCs hydrogen-deficient atmospheric models. Classical RCB stars photospheric temperatures range mostly from 4000 K to about 8500 K, and therefore their spectra look very different showing the presence of carbon molecules C$_2$ and CN up to $sim$6800 K and solely atomic absorption lines above that. We have put in place a series of criteria to distinguish RCB stars from other AGB carbon-rich stars. We found 45 new RCB stars, including 30 Cold ($4000<T_{eff}<6800$ K), 14 Warm ($6800<T_{eff}<8500$ K) and one hot RCB ($T_{eff}>15000$ K). Forty of these belong to the Milky Way and five are located in the Magellanic Clouds. We also confirmed that the long lasting candidate KDM 5651 is indeed a new Magellanic RCB star, increasing the total number of Magellanic Cloud RCB stars to 30. We have increased by $sim$50% the total number of RCB stars known, now reaching 147. We also include a list of 14 strong RCB candidates, most certainly observed during a dust obscuration phase. From the detection efficiency and success rate so far, we estimate that there should be no more than 500 RCB stars/HdC stars in the Milky Way.



قيم البحث

اقرأ أيضاً

NSV 11154 has been confirmed as a new member of the rare hydrogen deficient R Coronae Borealis (RCB) stars based on new photometric and spectroscopic data. Using new photometry, as well as archival plates from the Harvard archive, we have constructed the historical lightcurve of NSV 11154 from 1896 to the present. The lightcurve shows the sudden, deep, irregularly spaced declines characteristic of RCB stars. The visible spectrum is typical of a cool (Teff < 5000 K) RCB star showing no hydrogen lines, strong C2 Swan bands, and no evidence of 13C. In addition, the star shows small pulsations typical of an RCB star, and an infrared excess due to circumstellar dust with a temperature of ~800 K. The distance to NSV 11154 is estimated to be ~14.5 kpc. RCB stars are very rare in the Galaxy so each additional star is important to population studies leading to a better understanding the origins of these mysterious stars. Among the known sample of RCB stars, NSV 11154 is unusual in that it lies well above the Galactic plane (5 kpc) and away from the Galactic Center which suggests that its parent population is neither thick disk nor bulge.
147 - Geoffrey C. Clayton 2012
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in th e last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
The R Coronae Borealis (RCB) stars are rare hydrogen--deficient, carbon--rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars res ult from the mergers of CO/He white dwarf (WD) binaries. We constructed post--merger spherically asymmetric models computed with the MESA code, and then followed the evolution into the region of the HR diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He--burning shell. Our MESA modeling consists of engineering the star by adding He--WD material to an initial CO--WD model, and then following the post--merger evolution using a nuclear--reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within MESA. We follow the later evolution beyond the RCB phase to determine the stars likely lifetimes. The relative numbers of known RCB and Extreme Helium (EHe) stars correspond well to the lifetimes predicted from the MESA models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.
An R Coronae Borealis (RCB) star is a rare type of supergiant star that is increasingly thought to be the evolved merger product of two white dwarfs. Recently, many of them have been found distributed in a thin disk structure embedded inside the Gala ctic Bulge. This unexpected high density can give us more insight into the nature and age of RCB stars. We applied and tested successfully a new technique to find RCB stars based on the particular infrared emission. We demonstrated that RCB stars can now be found without the need of a light curve analysis, and therefore outside optically monitored fields. The selection of RCB candidates was based on their near-infrared excess and on particular mid-infrared emission of RCB shells, using photometric data from the 2MASS and Spitzer/GLIMPSE surveys. The OGLE light curves of all RCB candidates were then inspected visually and the ones presenting large and fast declines were followed-up spectroscopically . We discovered two new R Coronae Borealis stars, but also propose four new candidates. We stress that all of the 7 known RCB stars located in both Spitzer/GLIMPSE and OGLE-III fields were re-discovered, which indicates the high efficiency of our analysis. The proposed new technique to find RCB stars has been successful. It can now be extented to larger area, specially where the instellar extinction is too high to have been monitored by microlensing surveys, i.e the inner part of the Galactic Bulge.
Mid-infrared photometry of R Coronae Borealis stars obtained from various satellites from IRAS to WISE has been utilized in studying the variations of the circumstellar dusts contributions to the spectral energy distribution of these stars. The varia tion of the fractional coverage (R) of dust clouds and their blackbody temperatures (T$_d$) have been used in trying to understand the dust cloud evolution over the three decades spanned by the satellite observations. In particular, it is shown that a prediction R $ propto T_d^4$ developed in this paper is satisfied, especially by those stars for which a single collection of cloud dominates the IR fluxes. Correlations of R with photospheric abundance and luminosity of the stars are explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا