ترغب بنشر مسار تعليمي؟ اضغط هنا

Where do the AMS-02 anti-helium events come from?

75   0   0.0 ( 0 )
 نشر من قبل Vivian Poulin Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the origin of the anti-helium-3 and -4 events possibly detected by AMS-02. Using up-to-date semi-analytical tools, we show that spallation from primary hydrogen and helium nuclei onto the ISM predicts a $overline{{}^3{rm He}}$ flux typically one to two orders of magnitude below the sensitivity of AMS-02 after 5 years, and a $overline{{}^4{rm He}}$ flux roughly 5 orders of magnitude below the AMS-02 sensitivity. We argue that dark matter annihilations face similar difficulties in explaining this event. We then entertain the possibility that these events originate from anti-matter-dominated regions in the form of anti-clouds or anti-stars. In the case of anti-clouds, we show how the isotopic ratio of anti-helium nuclei might suggest that BBN has happened in an inhomogeneous manner, resulting in anti-regions with a anti-baryon-to-photon ratio $bar{eta}simeq10^{-3}eta$. We discuss properties of these regions, as well as relevant constraints on the presence of anti-clouds in our Galaxy. We present constraints from the survival of anti-clouds in the Milky-Way and in the early Universe, as well as from CMB, gamma-ray and cosmic-ray observations. In particular, these require the anti-clouds to be almost free of normal matter. We also discuss an alternative where anti-domains are dominated by surviving anti-stars. We suggest that part of the unindentified sources in the 3FGL catalog can originate from anti-clouds or anti-stars. AMS-02 and GAPS data could further probe this scenario.



قيم البحث

اقرأ أيضاً

We investigate the solar modulation effect with the long time cosmic ray proton and helium spectrum measured by AMS-02 on the time scale of a Bartels rotation (27 days) between May 2011 and May 2017. The time-span covers the negative heliospheric mag netic field polarity cycle, the polarity reversal period and the positive polarity cycle. The unprecedented accuracy of AMS-02 observation data provide a good opportunity to improve the understanding of the time dependent solar modulation effect. In this work, a two-dimensional solar modulation model is used to compute the propagation of cosmic rays in the heliosphere. Some important ingredients of the model which reflect the global heliospherical environment are taken from the observations. The propagation equation is numerically solved with the pubic Solarprop code. We find that the drift effect is suppressed during the high solar activity period but nearly recovered in the first half of 2017. The time-dependent rigidity dependence of the mean free path is critical to reproduce the observations between August 2012 and October 2015.
Grain growth during star formation affects the physical and chemical processes in the evolution of star-forming clouds. We investigate the origin of the millimeter (mm)-sized grains recently observed in Class I protostellar envelopes. We use the coag ulation model developed in our previous paper and find that a hydrogen number density of as high as $10^{10}~{rm cm^{-3}}$, instead of the typical density $10^5~{rm cm^{-3}}$, is necessary for the formation of mm-sized grains. Thus, we test a hypothesis that such large grains are transported to the envelope from the inner, denser parts, finding that gas drag by outflow efficiently launches the large grains as long as the central object has not grown to $gtrsim 0.1$ M$_{odot}$. By investigating the shattering effect on the mm-sized grains, we ensure that the large grains are not significantly fragmented after being injected in the envelope. We conclude that the mm-sized grains observed in the protostellar envelopes are not formed in the envelopes but formed in the inner parts of the star-forming regions and transported to the envelopes before a significant mass growth of the central object, and that they survive in the envelopes.
Indirect searches can be used to test dark matter models against expected signals in various channels, in particular antiprotons. With antiproton data available soon at higher and higher energies, it is important to test the dark matter hypothesis ag ainst alternative astrophysical sources, e.g. secondaries accelerated in supernova remnants. We investigate the two signals from different dark models and different supernova remnant parameters, as forecasted for the AMS-02, and show that they present a significant degeneracy.
Despite the spectacular discovery of an astrophysical neutrino flux by IceCube in 2013, its origin remains a mystery. Whatever its sources, we expect the neutrino flux to be accompanied by a comparable gamma-ray flux. These photons should be degraded in energy by electromagnetic cascades and contribute to the diffuse GeV-TeV flux precisely measured by the Fermi-LAT. Population studies have also permitted to identify the main classes of contributors to this flux, which at the same time have not been associated with major neutrino sources in cross-correlation studies. These considerations allow one to set constraints on the origin and spectrum of the IceCube flux, in particular its low-energy part. We find that, even accounting for known systematic errors, the Fermi-LAT data exclude to at least 95% C.L. any extragalactic transparent source class, irrespective of its redshift evolution, if the neutrino spectrum extends to the TeV scale or below. If the neutrino spectrum has an abrupt cutoff at $sim10$ TeV, barely compatible with current observations, the tension can be reduced, but this way out requires a significant modification to the current understanding of the origin of the diffuse extragalactic gamma-ray flux at GeV energies. In contrast, these considerations do not apply if a sizable fraction of IceCube data originates within the Galactic halo (a scenario however typically in tension with other constraints) or from a yet unidentified class of opaque extragalactic emitters, which do not let the high-energy gamma rays get out.
The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the positron ($e^+$) cosmic-ray flux has be en consolidated after the observation of a $gamma$-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe. In this work we undertake massive simulations of galactic pulsars populations, adopting different distributions for their position in the Galaxy, intrinsic physical properties, pair emission models, in order to overcome the incompleteness of the ATNF catalogue. We fit the $e^+$ AMS-02 data together with a secondary component due to collisions of primary cosmic rays with the interstellar medium. We find that several mock galaxies have a pulsar population able to explain the observed $e^+$ flux, typically by few, bright sources. We determine the physical parameters of the pulsars dominating the $e^+$ flux, and assess the impact of different assumptions on radial distributions, spin-down properties, Galactic propagation scenarios and $e^+$ emission time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا