ترغب بنشر مسار تعليمي؟ اضغط هنا

Violent quenching: molecular gas blown to 1000 km/s during a major merger

72   0   0.0 ( 0 )
 نشر من قبل James Geach
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter/submillimeter Array observations of a massive (M_stars~10^11 M_Sun) compact (r_e,UV~100 pc) merger remnant at z=0.66 that is driving a 1000 km/s outflow of cool gas, with no observational trace of an active galactic nucleus (AGN). We resolve molecular gas on scales of approximately 1-2 kpc, and our main finding is the discovery of a wing of blueshifted CO(2-1) emission out to -1000 km/s relative to the stars. We argue that this is the molecular component of a multiphase outflow, expelled from the central starburst within the past 5 Myr through stellar feedback, although we cannot rule out previous AGN activity as a launching mechanism. If the latter is true, then this is an example of a relic multiphase AGN outflow. We estimate a molecular mass outflow rate of approximately 300 M_Sun/yr, or about one third of the 10 Myr-averaged star formation rate. This system epitomizes the multiphase blowout episode following a dissipational major merger - a process that has violently quenched central star formation and supermassive black hole growth.



قيم البحث

اقرأ أيضاً

Andromeda II (And II) has been known for a few decades but only recently observations have unveiled new properties of this dwarf spheroidal galaxy. The presence of two stellar populations, the bimodal star formation history (SFH) and an unusual rotat ion velocity of And II put strong constrains on its formation and evolution. Following Lokas et al. (2014), we propose a detailed model to explain the main properties of And II involving (1) a gas-rich major merger between two dwarf galaxies at high redshift in the field and (2) a close interaction with M31 about 5 Gyr ago. The model is based on N-body/hydrodynamical simulations including gas dynamics, star formation and feedback. One simulation is designed to reproduce the gas-rich major merger explaining the origin of stellar populations and the SFH. Other simulations are used to study the effects of tidal forces and the ram pressure stripping during the interaction between And II and M31. The model successfully reproduces the SFH of And II including the properties of stellar populations, its morphology, kinematics and the lack of gas. Further improvements to the model are possible via joint modelling of all processes and better treatment of baryonic physics.
We present CO observations of 78 spiral galaxies in local merger pairs. These galaxies representa subsample of a Ks-band selected sample consisting of 88 close major-merger pairs (HKPAIRs), 44 spiral-spiral (S+S) pairs and 44 spiral-elliptical (S+E) pairs, with separation $<20 h^{-1}$ kpc and mass ratio <2.5. For all objects, the star formation rate (SFR) and dust mass were derived from HERSCHEL PACS and SPIRE data, and the atomic gas mass, MHI, from the Green Bank Telescope HI observations. The complete data set allows us to study the relation between the gas (atomic and molecular) mass, dust mass and SFR in merger galaxies. We derive the molecular gas fraction (MH2/M*), molecular-to-atomic gas mass ratio (MH2/MHI), gas-to-dust mass ratio and SFE (=SFR/MH2) and study their dependences on pair type (S+S compared to S+E), stellar mass and the presence of morphological interaction signs. We find an overall moderate enhancements (~2x) in both molecular gas fraction (MH2/M*), and molecular-to-atomic gas ratio (MH2/MHI) for star-forming galaxies in major-merger pairs compared to non-interacting comparison samples, whereas no enhancement was found for the SFE nor for the total gas mass fraction (MHI+MH2)/M*. When divided into S+S and S+E, low mass and high mass, and with and without interaction signs, there is a small difference in SFE, moderate difference in MH2/M*, and strong differences in MH2/MHI between subsamples. For MH2/MHI, the difference between S+S and S+E subsamples is 0.69+-0.16 dex and between pairs with and without interaction signs is 0.53+-0.18 dex. Together, our results suggest (1) star formation enhancement in close major-merger pairs occurs mainly in S+S pairs after the first close encounter (indicated by interaction signs) because the HI gas is compressed into star-forming molecular gas by the tidal torque; (2) this effect is much weakened in the S+E pairs.
Follow-up observations of (sub-)mm-selected gravitationally-lensed systems have allowed a more detailed study of the dust-enshrouded phase of star-formation up to very early cosmic times. Here, the case of the gravitationally lensed merger in HATLAS J142935.3-002836 (also known as H1429-0028; z_lens=0.218, z_bkg=1.027) is revisited following recent developments in the literature and new APEX observations targeting two carbon monoxide (CO) rotational transitions J_up=3 and 6. We show that the line-profiles comprise three distinct velocity components, where the fainter high-velocity one is less magnified and more compact. The modelling of the observed spectral line energy distribution of CO J_up=2 to 6 and [CI]3P_1-3P_0 assumes a large velocity gradient scenario, where the analysis is based on four statistical approaches. Since the detected gas and dust emission comes exclusively from only one of the two merging components (the one oriented North-South, NS), we are only able to determine upper-limits for the companion. The molecular gas in the NS component in H1429-0028 is found to have a temperature of ~70K, a volume density of log(n[/cm3])~3.7, to be expanding at ~10km/s/pc, and amounts to M_H2=4(-2,+3)*1e9 Msun. The CO to H2 conversion factor is estimated to be alpha_CO=0.4(-0.2,+0.3) Msun/(K.km/s.pc2). The NS galaxy is expected to have a factor of >10x more gas than its companion (M_H2<3e8 Msun). Nevertheless, the total amount of molecular gas in the system comprises only up to 15 per cent (1sigma upper-limit) of the total (dynamical) mass.
We present an analysis of the mass distribution inferred from strong lensing by SPT-CL J0356-5337, a cluster of galaxies at redshift z = 1.0359 revealed in the follow-up of the SPT-SZ clusters. The cluster has an Einstein radius of Erad=14 for a sour ce at z = 3 and a mass within 500 kpc of M_500kpc = 4.0+-0.8x10^14Msol. Our spectroscopic identification of three multiply-imaged systems (z = 2.363, z = 2.364, and z = 3.048), combined with HST F606W-band imaging allows us to build a strong lensing model for this cluster with an rms of <0.3 between the predicted and measured positions of the multiple images. Our modeling reveals a two-component mass distribution in the cluster. One mass component is dominated by the brightest cluster galaxy and the other component, separated by ~170 kpc, contains a group of eight red elliptical galaxies confined in a ~9 (~70 kpc) diameter circle. We estimate the mass ratio between the two components to be between 1:1.25 and 1:1.58. In addition, spectroscopic data reveal that these two near-equal mass cores have only a small velocity difference of 300 km/s between the two components. This small radial velocity difference suggests that most of the relative velocity takes place in the plane of the sky, and implies that SPT-CL J0356-5337 is a major merger with a small impact parameter seen face-on. We also assess the relative contributions of galaxy-scale halos to the overall mass of the core of the cluster and find that within 800 kpc from the brightest cluster galaxy about 27% of the total mass can be attributed to visible and dark matter associated with galaxies, whereas only 73% of the total mass in the core comes from cluster-scale dark matter halos.
[Abridged] Aims: This work focuses on one lensed system, HATLAS J142935.3-002836 (H1429-0028), selected in the Herschel-ATLAS field. Gathering a rich, multi-wavelength dataset, we aim to confirm the lensing hypothesis and model the background sources morphology and dynamics, as well as to provide a full physical characterisation. Methods: Multi-wavelength high-resolution data is utilised to assess the nature of the system. A lensing-analysis algorithm which simultaneously fits different wavebands is adopted to characterise the lens. The background galaxy dynamical information is studied by reconstructing the 3-D source-plane of the ALMA CO(J:4-3) transition. Near-IR imaging from HST and Keck-AO allows to constrain rest-frame optical photometry independently for the foreground and background systems. Physical parameters (such as stellar and dust masses) are estimated via modelling of the spectral energy distribution taking into account source blending, foreground obscuration, and differential magnification. Results: The system comprises a foreground edge-on disk galaxy (at z_sp=0.218) with an almost complete Einstein ring around it. The background source (at z_sp=1.027) is magnified by a factor of ~8-10 depending on wavelength. It is comprised of two components and a tens of kpc long tidal tail resembling the Antennae merger. As a whole, the system is a massive stellar system (1.32[-0.41,+0.63] x1E11 Mo) forming stars at a rate of 394+-90 Mo/yr, and has a significant gas reservoir M_ISM = 4.6+-1.7 x1E10 Mo. Its depletion time due to star formation alone is thus expected to be tau_SF=M_ISM/SFR=117+-51 Myr. The dynamical mass of one of the components is estimated to be 5.8+-1.7 x1E10 Mo, and, together with the photometric total mass estimate, it implies that H1429-0028 is a major merger system (1:2.8[-1.5,+1.8]).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا