ﻻ يوجد ملخص باللغة العربية
Given a complex manifold $X$, any Kahler class defines an affine bundle over $X$, and any Kahler form in the given class defines a totally real embedding of $X$ into this affine bundle. We formulate conditions under which the affine bundles arising this way are Stein and relate this question to other natural positivity conditions on the tangent bundle of $X$. For compact Kahler manifolds of non-negative holomorphic bisectional curvature, we establish a close relation of this construction to adapted complex structures in the sense of Lempert--SzH{o}ke and to the existence question for good complexifications in the sense of Totaro. Moreover, we study projective manifolds for which the induced affine bundle is not just Stein but affine and prove that these must have big tangent bundle. In the course of our investigation, we also obtain a simpler proof of a result of Yang on manifolds having non-negative holomorphic bisectional curvature and big tangent bundle.
Let $(X,omega)$ be a compact K{a}hler manifold with a K{a}hler form $omega$ of complex dimension $n$, and $Vsubset X$ is a compact complex submanifold of positive dimension $k<n$. Suppose that $V$ can be embedded in $X$ as a zero section of a holomor
Let $(X,omega)$ be a compact Kahler manifold of dimension $n$ and fix $1leq mleq n$. We prove that the total mass of the complex Hessian measure of $omega$-$m$-subharmonic functions is non-decreasing with respect to the singularity type. We then solv
We investigate the $CR$ geometry of the orbits $M$ of a real form $G_0$ of a complex simple group $G$ in a complex flag manifold $X=G/Q$. We are mainly concerned with finite type, Levi non-degeneracy conditions, canonical $G_0$-equivariant and Mostow
We study, from the point of view of CR geometry, the orbits M of a real form G of a complex semisimple Lie group G in a complex flag manifold G/Q. In particular we characterize those that are of finite type and satisfy some Levi nondegeneracy conditi
This note establishes smooth approximation from above for J-plurisubharmonic functions on an almost complex manifold (X,J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion f