ﻻ يوجد ملخص باللغة العربية
We measure the thermal time constants of suspended single layer molybdenum disulfide drums by their thermomechanical response to a high-frequency modulated laser. From this measurement the thermal diffusivity of single layer MoS$_2$ is found to be 1.14 $times$ 10$^{-5}$ m$^2$/s on average. Using a model for the thermal time constants and a model assuming continuum heat transport, we extract thermal conductivities at room temperature between 10 to 40 W/(m$cdot$K). Significant device-to-device variation in the thermal diffusivity is observed. Based on statistical analysis we conclude that these variations in thermal diffusivity are caused by microscopic defects that have a large impact on phonon scattering, but do not affect the resonance frequency and damping of the membranes lowest eigenmode. By combining the experimental thermal diffusivity with literature values of the thermal conductivity, a method is presented to determine the specific heat of suspended 2D materials, which is estimated to be 255 $pm$ 104 J/(kg$cdot$K) for single layer MoS$_2$.
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with
Thermal properties of suspended single-layer graphene membranes are investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time $tau$ between the optical intensity and mecha
Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of th
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the l